Math Day 2024 at Murray State University **Lower Level Examination**

- Do not open this exam until you are told to do so.
- Clearly fill in your NAME and STUDENT NUMBER on the bubble sheet. Your student number is located on the card your teacher gave you.
- You have 50 minutes to complete this exam.
- You may not use a calculator, phone, notes, book, or other aid. Any attempt to do so will result in disqualification.
- The exam will be scored as follows:
 - +1 point for a correct answer
 - $-\frac{1}{4}$ point for an incorrect answer
 - 0 points for a blank answer
- Clearly select one answer on the bubble sheet for each question. If more than one answer is selected, the answer will be marked as incorrect.

GOOD LUCK!

- 1. If an equilateral triangle has a height of 10, what is the area of the triangle?
 - (a) $\frac{50}{\sqrt{3}}$

 - (b) 50
 - (c) $\frac{100}{\sqrt{3}}$

 - (d) $\frac{200}{\sqrt{3}}$
 - (e) None of the above
- 2. Suppose an empty swimming pool needs to be filled with water. Pump A can fill the pool in 3 hrs and pump B can fill the pool in 4 hours. If pump A is turned on at 12:00 noon and pump B is turned on at 1:30 pm, then rounding up to the nearest minute, what is the earliest time that the pool will be filled?
 - (a) 2:20 pm
 - (b) 2:21 pm
 - (c) 2:22 pm
 - (d) 2:23 pm
 - (e) None of the above
- 3. Let L_1 be the line given by the equation 6x + 2y = 40. If L_2 is the perpendicular line to L_1 at the x-intercept of L_1 , find the y-intercept of L_2 .
 - (a) $\left(0, \frac{20}{9}\right)$. (b) $\left(0, \frac{20}{3}\right)$. (c) $\left(0, -\frac{20}{3}\right)$.
 - (d) (0, -20).
 - (e) None of the above

- 4. Suppose you wish to create a square array of coins that is as large as possible. If you have 1950 coins, how many coins are not used in making this square array?
 - (a) 10
 - (b) 14
 - (c) 18
 - (d) 25
 - (e) None of the above
- 5. Let R be the region of the coordinate plane consisting of those points (x, y) for which $x 5 \le y \le 4 x$ and $0 \le x \le 3$. What is the area of R?
 - (a) 12
 - (b) 15
 - (c) 20
 - (d) 60
 - (e) None of the above

6. If $\{a_n\}$ is a positive sequence satisfying $a_{n+1}^2 = a_n^2 + 6a_n - 4a_{n+1} + 5$ for $n \ge 1$ and $a_1 = 1$, then determine a_{1000} .

- (a) 1000
- (b) 2000
- (c) 3000
- (d) 4000
- (e) None of the above

7. If x_0 is the smallest positive solution to $3x^3 - 10x^2 - 81x + 28 = 0$, then

- (a) $0 < x_0 < 1$
- (b) $1 \le x_0 < 2$
- (c) $2 \le x_0 < 3$
- (d) $3 \le x_0 < 4$
- (e) $4 \le x_0$

- 8. The fraction $\frac{5}{7}$ has which of the following as a decimal representation?
 - (a) $0.\overline{714}$
 - (b) $0.\overline{7142}$
 - (c) $0.\overline{71428}$
 - (d) $0.\overline{714285}$
 - (e) $0.\overline{7142857}$
- 9. Suppose you wish to know the height of a building. You look up with angle of elevation 60° and can see the top of the building. If you are standing 200 feet from the building, then from the choices below, which best describes the height of the building?
 - (a) 100 feet
 - (b) $100\sqrt{2}$ feet
 - (c) $100\sqrt{3}$ feet
 - (d) $200\sqrt{3}$ feet

(e)
$$\frac{200}{\sqrt{3}}$$
 feet

- 10. If both of the ordered pairs (1, 4) and (2, 2) lie on a circle with center $(\frac{1}{6}, k)$, then what is the radius r of the circle?
 - (a) $\frac{\sqrt{5}}{2}$ (b) $\frac{5}{6}$ (c) $\frac{5\sqrt{5}}{6}$ (d) $\frac{121}{36}$
 - (e) None of the above

- 11. Suppose at a store, a pair of shoes is on sale for \$102. If the discount was %15 and x represents the original price of the shoes, then which of the following is satisfied?
 - (a) $\$115 < x \le \117
 - (b) $117 < x \le 119$
 - (c) $119 < x \le 121$
 - (d) $121 < x \le 123$
 - (e) None of the above

12. The graphs of $x = \frac{1}{y}$ and y = x + 10 have how many intersection points?

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4
- 13. Four pipes are stacked as shown below, with each pipe having a diameter of 4 inches. What is the diameter of the largest possible pipe that would fit within the space enclosed by the four 4-inch-diameter pipes?

(a)	$2\sqrt{2}$	4 in.
(b)	$2(\sqrt{2}+1)$	
(c)	$4(\sqrt{2}-1)$	4 in.
(d)	4	
(e)	None of the above	4 in. 4 in.

- 14. The smallest leg of a right triangle has endpoints with coordinates (1, 1) and (2, 3) in the xy-plane. What is the ordered pair in the 4th quadrant with integer coordinates that yields the smallest right triangle?
 - (a) (8, -1)
 - (b) (9, -1)
 - (c) (11, -2)
 - (d) (12, -2)
 - (e) None of the above

15. What is the area of the triangle with vertices (1, 1), (3, 2), (2, 4)?

- (a) $\frac{\sqrt{5}}{2}$ (b) $\frac{5}{2}$
- (c) 2
- (d) 3
- (e) None of the above

16. The solution set of the equation
$$\frac{2x^3 - 8x^2 + 8x}{(x-2)^2} = 2x$$
 is

(a) $\{0\}$

- (b) All real numbers
- (c) All real numbers except 2
- (d) All real numbers except -2 and 2
- (e) None of the above

- 17. Find an equivalent expression for the perimeter of the parallelogram P where the four vertices of P are characterized by the ordered pairs (3, 4), (7, 5), (4, 7), and (8, 8).
 - (a) 14
 - (b) 18

(c)
$$\frac{7}{\sqrt{17} - \sqrt{10}}$$

(d) $\frac{14}{\sqrt{17} - \sqrt{10}}$
(e) $\frac{18}{\sqrt{17} - \sqrt{10}}$

- 18. Suppose we have 4 groups of people, group A, group B, group C, and group D. Also, suppose all of the following statements are true:
 - All of group B is in group A.
 - Some of group C is in group B.
 - None of group D is in group A.

What must be true?

- (a) There cannot be anyone in both groups B and D.
- (b) Some of group C is in group D.
- (c) Anyone in both groups A and C are in group B.
- (d) All of group C is either in group A or group D.
- (e) None of the above

19. If
$$f(x) = \frac{x+3}{2x-1}$$
, then $(f \circ f)(x)$ is
(a) $\frac{x+6}{2x-5}$
(b) $\frac{7x}{5}$
(c) x
(d) $\left(\frac{x+3}{2x-1}\right)^2$

(e) None of the above

- 20. In the parallelogram $\Diamond ABCD$, sides \overline{AB} and \overline{CD} have length 15, sides \overline{AD} and \overline{BC} have length 7, angle $\angle DAB$ is obtuse, and angle $\angle DAC$ is a right angle. What is the area of the parallelogram?
 - (a) 105
 - (b) $28\sqrt{11}$
 - (c) $60\sqrt{11}$
 - (d) $7\sqrt{274}$
 - (e) $15\sqrt{274}$
- 21. Suppose that the points P = (0, 2) and Q = (1, 0) are endpoints for a side of a square $\Box PQRS$ whose other vertices lie in Quadrant I. If S is the vertex of the square with maximum y-value, then S is
 - (a) $\left(\frac{5}{4}, \frac{21}{8}\right)$ (b) $\left(\frac{3}{2}, \frac{11}{4}\right)$ (c) $\left(\frac{7}{4}, \frac{23}{8}\right)$ (d) (2,3)
 - (e) None of the above
- 22. A circle in the coordinate plane has its center on the positive part of the x-axis and passes through the points (0,5) and (-2,0). The radius of the circle is
 - (a) $\frac{21}{4}$ (b) $\frac{25}{4}$ (c) $\frac{29}{4}$
 - (d) $\frac{33}{4}$

 - (e) None of the above

23. How many x-intercepts does the function $R(x) = \frac{x^3 + 7x^2 + 2x - 40}{x^2 - 5x + 6}$ have?

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5
- 24. In a right triangle, assume the length of the adjacent leg to the angle θ is 4 and the length of the opposite leg is 5. Evaluate $\sin(\theta) \tan(\theta)$.
 - (a) $\frac{20}{\sqrt{41}}$

 (b) $\frac{20}{41}$

 (c) $\frac{25}{4\sqrt{41}}$

 (d) $\frac{4}{\sqrt{41}}$
 - (e) None of the above

25. Given that $a_{n+1} = 1 + 2a_n$ for $n \ge 1$ and that $a_{100} = 2^{100} - 1$, find a_1 .

- (a) 1
- (b) 3
- (c) 7
- (d) 15
- (e) 31

26. Simplify the following:

$$\left(\sqrt{5}\right)^{\log_2(4)} + \left(\left(\sqrt[3]{7}\right)^{\sqrt[3]{3}}\right)^{\sqrt[3]{9}}$$

- (a) $5^8 + \sqrt[3]{189}$
- (b) $5 + \sqrt[3]{189}$
- (c) $5^8 + 7$
- (d) 12
- (e) None of the above

27. If
$$x = \frac{3}{9 + \frac{3}{2}}}}}}}}$$
, then $x = \frac{3}{9 + \frac{3}{9 + \frac{3}{9 + \frac{3}{2}}}}$
(a) $\frac{1}{3}$
(b) $\frac{1}{4}$
(c) $\frac{-9 + \sqrt{83}}{2}$
(d) $\frac{-9 + \sqrt{85}}{2}$
(e) $\frac{-9 + \sqrt{93}}{2}$

28. If $x = \sqrt[5]{7}$ and $y = \sqrt[4]{5}$, then (a) 1 < x < y < 2(b) 2 < x < y < 3(c) 1 < y < x < 2(d) 2 < y < x < 3(e) None of the above 29. What is the ones digit of $2^{10^{10}}$?

- (a) 0
- (b) 2
- (c) 4
- (d) 6
- (e) 8
- 30. Suppose 4 cats and 3 dogs are randomly placed in a line. What is the probability that no two cats are sitting next to one another?
 - (a) $\frac{3!}{4!}$ (b) $\frac{4!}{7!}$ (c) $\frac{3!}{7!}$
 - (d) $\frac{3!4!}{7!}$
 - (e) None of the above