Developmental Stability in Amphibians as a Biological Indicator of Chemical Contamination and Other Environmental Stressors

Howard H. Whiteman
Department of Biological Sciences and Center of Excellence in Ecosystem Studies

and

Bommanna G. Loganathan
Department of Chemistry and Chemical Services Laboratory

Murray State University
Amphibians

Amphi- means ‘dual’ or ‘on both sides’; -bian is from bios, meaning life.

Amphibian thus refers to the dual life cycle of most amphibians, called a complex life cycle.
Why should we care about amphibians?

- Integral parts of many ecosystems
 - Cascading effects?
- Warning signals of environmental health
 - Complex life cycles = double jeopardy
 - Permeable membranes
- Moral/ethical arguments
Industrial Pollution
Agricultural Pollution
Amphibian Deformities

Pollutants, UV-B, or Parasites?
How can we assess threatened amphibian populations before declines or deformities take place?

Developmental Stability
Developmental Stability (DS)

- DS is one component of an organism’s ability to withstand environmental and genetic disturbances during development.
- Previously used as a stress indicator in numerous species.
- Few studies have compared DS in amphibians, particularly in regard to stress.
Asymmetry in Bilateral Organisms
Population Asymmetry (PA) can be used to evaluate DS

- PA is population-level differences between the left and right sides of paired bilateral characters.
- Populations that are more developmentally stable have lower population asymmetry.
- Environmental stressors lead to decreased DS and thus greater PA.
Research Questions

- Is amphibian PA correlated with anthropogenic (contaminant levels, land use, water chemistry) or natural (density) stressors?
- Is PA applicable across amphibian species and life history stages?
<table>
<thead>
<tr>
<th>Species</th>
<th>Larval habitat</th>
<th>Adult habitat</th>
<th>Breeding habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullfrog</td>
<td>Aquatic</td>
<td>Semi-terrestrial</td>
<td>Aquatic</td>
</tr>
<tr>
<td>Leopard frog</td>
<td>Aquatic</td>
<td>Semi-terrestrial</td>
<td>Aquatic</td>
</tr>
<tr>
<td>Eastern newt</td>
<td>Aquatic</td>
<td>Aquatic</td>
<td>Aquatic</td>
</tr>
<tr>
<td>Spotted Salamander</td>
<td>Aquatic</td>
<td>Terrestrial</td>
<td>Aquatic</td>
</tr>
<tr>
<td>Slimy Salamander</td>
<td>Terrestrial</td>
<td>Terrestrial</td>
<td>Terrestrial</td>
</tr>
</tbody>
</table>
Study Organisms

Rana catesbeiana (bullfrog) tadpoles.
Notophthalmus viridescens

(Eastern newt) males.
Ambystoma maculatum

(spotted salamander) males.
Tadpole asymmetry was greater in agricultural than forested sites.

\[t = 3.50, \quad p = 0.01 \]

\[\alpha = 0.00625 \]

\[\text{log transformed} \]
Tadpole asymmetry increased with anthropogenic disturbance.

EN (F_{2,6} = 5.6, p = 0.04)

EHL (F_{2,6} = 10.0, p = 0.01)
Male newt asymmetry increased with pH.

\[Y = -1.501 + 0.271 \times X; \quad R^2 = 0.493 \]

\[R^2 = 0.49 \]
HCB

Polychlorinated Biphenyl (PCB)

DDT

Chlordane
<table>
<thead>
<tr>
<th>Sediment</th>
<th>Number of Analytes</th>
<th>Accuracy Assessment: Z-Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesticides</td>
<td>11</td>
<td><2</td>
</tr>
<tr>
<td>PCB Congeners</td>
<td>0</td>
<td>>3</td>
</tr>
<tr>
<td>Sediment</td>
<td>20</td>
<td><2</td>
</tr>
<tr>
<td>Fish</td>
<td>1</td>
<td>>3</td>
</tr>
<tr>
<td>Pesticides</td>
<td>19</td>
<td><2</td>
</tr>
<tr>
<td>PCB Congeners</td>
<td>1</td>
<td>>3</td>
</tr>
<tr>
<td>Fish</td>
<td>19</td>
<td><2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>>3</td>
</tr>
</tbody>
</table>

Z-scores: <2 = satisfactory; >3 = unsatisfactory. (NIST's Accuracy Assessments are: Satisfactory, Questionable and Unsatisfactory).
Amphibian contamination varied by population and species.

<table>
<thead>
<tr>
<th>Sampling Location</th>
<th>Species</th>
<th>Life Stage</th>
<th>Total PCBs</th>
<th>Total DDTs</th>
<th>HCB</th>
<th>Chlordane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shuman #2 (Def)</td>
<td>Bullfrog</td>
<td>Larva</td>
<td>22.43</td>
<td>3.36</td>
<td>0.11</td>
<td>2.20</td>
</tr>
<tr>
<td>Bishop #1</td>
<td>Bullfrog</td>
<td>Larva</td>
<td>10.36</td>
<td>1.98</td>
<td>0.75</td>
<td>2.21</td>
</tr>
<tr>
<td>M. Morgan #3</td>
<td>Bullfrog</td>
<td>Larva</td>
<td>8.70</td>
<td>5.05</td>
<td>0.77</td>
<td>2.28</td>
</tr>
<tr>
<td>Bishop #4</td>
<td>Bullfrog</td>
<td>Larva</td>
<td>9.99</td>
<td>4.02</td>
<td>1.40</td>
<td>2.53</td>
</tr>
<tr>
<td>Tower LBL (4)</td>
<td>Bullfrog</td>
<td>Larva</td>
<td>11.30</td>
<td>6.43</td>
<td>BDL</td>
<td>1.38</td>
</tr>
<tr>
<td>Elk & Bison (1M)</td>
<td>Spotted Salamander</td>
<td>Adult Male</td>
<td>24.56</td>
<td>6.88</td>
<td>3.98</td>
<td>33.96</td>
</tr>
<tr>
<td>Site 68/80</td>
<td>Spotted Salamander</td>
<td>Adult Male</td>
<td>13.61</td>
<td>9.70</td>
<td>3.47</td>
<td>1.13</td>
</tr>
<tr>
<td>Star Camp 2 (1M)</td>
<td>Spotted Salamander</td>
<td>Adult Male</td>
<td>18.72</td>
<td>BDL</td>
<td>1.80</td>
<td>1.21</td>
</tr>
<tr>
<td>LBL-142 (4M)</td>
<td>Eastern Newt</td>
<td>Adult Male</td>
<td>20.73</td>
<td>6.07</td>
<td>0.49</td>
<td>1.20</td>
</tr>
<tr>
<td>LBL-220 (6M)</td>
<td>Eastern Newt</td>
<td>Adult Male</td>
<td>33.40</td>
<td>6.80</td>
<td>0.78</td>
<td>3.14</td>
</tr>
</tbody>
</table>
HCB levels varied significantly across species.

\[F_{2,5} = 21.0, \ p < 0.004 \]
Is PA related to contaminant concentration in bullfrog tadpoles?

<table>
<thead>
<tr>
<th>Population</th>
<th>Total PCBs (ng/g wet wt)</th>
<th>EHL FA 7 (mpu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morgan</td>
<td>8.70</td>
<td>0.020</td>
</tr>
<tr>
<td>Bishop</td>
<td>9.90-10.36</td>
<td>0.034</td>
</tr>
<tr>
<td>Shuman</td>
<td>22.43</td>
<td>???*</td>
</tr>
</tbody>
</table>

*major deformities
Is PA related to contaminant concentration in eastern newts?

<table>
<thead>
<tr>
<th>Population</th>
<th>Total PCBs (ng/g wet wt)</th>
<th>FA 11 (pixels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBL-142</td>
<td>20.73</td>
<td>39.4</td>
</tr>
<tr>
<td>LBL-220</td>
<td>33.40</td>
<td>41.1</td>
</tr>
</tbody>
</table>

major deformities
Conclusions

- Amphibian asymmetry was *correlated* with anthropogenic disturbance.

- Data suggest that contamination levels might also be related to asymmetry and phenodeviants.
Implications

- Developmental stability in amphibians may provide an early warning of environmental stressors affecting humans.
Consequences of Tissue Contamination in Humans

- Reproductive failure
- Developmental problems
- Hepatic damage
- Respiratory and cardiovascular problems
- Immune system suppression
- Cancer
Implications

- Developmental stability may act as a biological indicator for monitoring and restoring amphibian populations.
Bufo boreas

Colorado Gap Analysis Project
Western Toad (Bufo boreas boreas)
Current and Future Research

- Other life stages and species
- Further contaminant analysis
- Age effects (B. Kobylarz MS)
- GIS/Remote Sensing (J. Boynton MS)
- Experiments
 - Causative factors
 - Effects of metamorphosis
ACKNOWLEDGEMENTS

Funding:
- EPA EPSCoR
- Kentucky Water Resources Research Institute
- Center of Excellence in Ecosystem Science Seed Grant
- Pittsburgh Zoo Conservation Fund

Water Chemistry Analysis:
- Hancock Biological Station
 » Karla Johnston, David White, et al

Assistance:
- Postdoc: Jason Neal
- Graduate: Amy Benson, Beth Kobylarz, Jessica Boynton
- Undergraduate: Michele Dotson, Robert Cates, Catherine Aubee, Kosta Seaford