I had my students do this activity the third day in Introductory Algebra. The first day students had done an activity about constants and variables that also had a similar pattern recognition activity (attached at the end of this activity). In the first activity, we had a follow-up discussion with the entire class and discussed which terms ended up as variable patterns and which were constant. In this activity, each group had a slightly different pattern. I gave each group a transparency to report about their particular activity and graded each group with the rubric below.

The concepts/skills/notation that surfaced from the activity and follow-up discussion:

- Correct use of the words "variable" and "constant"
- Learning how to write " $n \times n$ " as n^2
- Reinforcement of what a term is.
- What are "like terms?"
- What is a coefficient?
- How do you substitute a value into a formula?
- You can't use the same variable to represent two different concepts—"n is the card number, so it cannot represent the total circles and square on a card."

This activity can be expanded to Intermediate or College Algebra by introducing function notation, dependent and independent variable, graphing and list features of a graphing calculator, talking about sequences, have more complicated patterns (decreasing patterns, exponential) and by having students come up with at least 2 patterns established by the 3-card sequence.

Student groups get the following grading sheet before they start the activity and I graded the activity while students did the presentation.

Grading Rubric

	Excellent	Good	Satisfactory
Explanations are clear, writing is	3	2	1
easy to read, and correct			
mathematical language is used.			
Presenter communicates with the	3	2	1
class and makes eye contact.			
Everyone participates and	3	2	1
contributes.			
Total Points:			

Comment below or on the back about how your group worked together. (It is possible that an individual who did not participate or was out of the room for a substantial part of the discussion will receive reduced points.)

Group 1: Cards 1, 2, and 3 have the number of squares and circles as shown below.

	Card 1	Card 2	Card 3	3
		0		000 000 000
1.	and circles on the	ards numbered 1, 2, and respective cards, fill in d be on the next cards in	the table below to show	
	Card Number	Number of Squares	Number of Circles	Total Squares and Circles
	1			
	2			
	3			
	4			
	5			

2. Using the variable, *n*, to write a mathematical formula to show how many total circles and squares would be on the *n*th card.

6

- 3. Show how to substitute into the formula above to determine how many circles and squares would be on the 1000th card.
- 4. Fill in the information on the transparency provided and present your problem to the class.

Group	o 2: Card:	s 1, 2, 3	and 3	have tl	ie numb	er of	squares	and	circle	es as	shown	below.

Card I	Cara 2	Card 3

Card Number	Number of Squares	Number of Circles	Total Squares and Circles
	_		
1			
2			
3			
4			
5			
6			

- 2. Using the variable, *n*, to write a mathematical formula to show how many total circles and squares would be on the *n*th card.
- 3. Show how to substitute into the formula above to determine how many circles and squares would be on the 1000th card.
- 4. Fill in the information on the transparency provided and present your problem to the class.

Group 3: Cards	1, 2, and 3	have the number	of squares and	circles as	shown below.
1	, ,		1		

Card I	Card 2	Card 3
0		

Card Number	Number of Squares	Number of Circles	Total Squares and Circles
	•		
1			
2			
3			
4			
5			
6			

- 2. Using the variable, *n*, to write a mathematical formula to show how many total circles and squares would be on the *n*th card.
- 3. Show how to substitute into the formula above to determine how many circles and squares would be on the 1000^{th} card.
- 4. Fill in the information on the transparency provided and present your problem to the class.

Card 1	Card 2	Card 3

Card Number	Number of Squares	Number of Circles	Total Squares and Circles
	_		
1			
2			
3			
4			
5			
6			

- 2. Using the variable, *n*, to write a mathematical formula to show how many total circles and squares would be on the *n*th card.
- 3. Show how to substitute into the formula above to determine how many circles and squares would be on the 1000th card.
- 4. Fill in the information on the transparency provided and present your problem to the class.

Group 5: Cards	1, 2, and 3	have the number	of squares and	circles as s	shown below.
1	, ,		1		

Card 1	Card 2	Card 3

Card Number	Number of Squares	Number of Circles	Total Squares and Circles
	•		
1			
2			
3			
4			
5			
6			

- 2. Using the variable, *n*, to write a mathematical formula to show how many total circles and squares would be on the *n*th card.
- 3. Show how to substitute into the formula above to determine how many circles and squares would be on the 1000^{th} card.
- 4. Fill in the information on the transparency provided and present your problem to the class.

Group 6: Cards 1, 2, and 3 ha	ave the number of squares a	nd circles as shown below.
Card 1	Card 2	Card 3

Card I	Card 2	Card 3
0		

Card Number	Number of Squares	Number of Circles	Total Squares and Circles
1			
2			
3			
4			
5			
6			

- 2. Using the variable, *n*, to write a mathematical formula to show how many total circles and squares would be on the *n*th card.
- 3. Show how to substitute into the formula above to determine how many circles and squares would be on the 1000th card.
- 4. Fill in the information on the transparency provided and present your problem to the class.

\sim	~	α 1	1 0	1 2	1	.1	1	C		1	• 1		1	1 1
(traiii	າ / ·	Cards	1 /	and ∢	have	the	niimher	ot s	quares a	ทศ	circles	ลร	shown	helow
Orou	<i>,</i> , .	Curus	1, 4	, una s	iiu v C	uic	Hullioti	OIB	quares a	пu	CHICIOS	ab	SHOWI	ociow.

Card 1		Card 2		Card 3
0	0		0	0 0 0
	0	0	0	

Card Number	Number of Squares	Number of Circles	Total Squares and Circles
	•		
1			
2			
3			
4			
5			
6			

- 2. Using the variable, *n*, to write a mathematical formula to show how many total circles and squares would be on the *n*th card.
- 3. Show how to substitute into the formula above to determine how many circles and squares would be on the 1000th card.
- 4. Fill in the information on the transparency provided and present your problem to the class.

Group 8: Cards 1, 2, and 3 ha	ave the number of square	es and circles as shown	below.
Card 1	Card 2	Card 3	

Curu 1	Curu 2	Curu 3

Card Number	Number of Squares	Number of Circles	Total Squares and Circles
1			
2			
3			
4			
_			
5			
6			

- 2. Using the variable, *n*, to write a mathematical formula to show how many total circles and squares would be on the *n*th card.
- 3. Show how to substitute into the formula above to determine how many circles and squares would be on the 1000th card.
- 4. Fill in the information on the transparency provided and present your problem to the class.

What is a Variable, What is a Constant? Martha Haehl Introductory Algebra

1.	What does the words "variable" mean to you outside of a math class? Describe a way the word, variable, might be used in a newscast or newspaper, a magazine, or in everyday conversation.
2.	What does the words "constant" mean to you outside of a math class? Describe a way the word, constant, might be used in a newscast or newspaper, a magazine, or in everyday conversation.
3.	Describe what the word, variable, means to you in mathematics.
4.	Describe what the word, constant, means to you in mathematics.

Pattern Recognition, Constants and Variables Martha Haehl, Introductory Algebra

Scenario: Three creators—Jebula, Maliba, and Noble—of planet *Outthere* decided to spiff up the globe by laying 3 colors of tile in various patterns on the surface. Each creator chose her favorite color and devised her own scheme for laying the tiles. On the 1st three days the creators laid tiles as shown in the table below. (The tiles were slightly curved so that they fit on the curved surface of *Outthere*.)

	Jebula (Red)	Maliba (Purple)	Noble (Green)
Day 1	1 tile	1 tile	1 tile
Day 2	1 tile	2 tiles	2×2 square of tiles
Day 3	1 tile	3 tiles	3×3 square of tiles

1. Following a pattern implied in the table, how many tiles of each color were laid on the 3rd, 4th, 5th, 6th, 7th, 8th, 9th, and10th days, 19th day, 108th day, 1095th day? How many total tiles were laid for each day?

	Red	Purple	Green	Total Tiles
Day 3				
Day 4				
Day 5				
Day 6				
Day 7				
Day 8				
Day 9				
Day 10				
Day 19				
Day 108				
Day 1095				

2.	each color and the t	otal number o	w he or she would calculate how many tiles of of tiles that would be laid in one day—without is (the 1 st , 2 nd , 99 th , for example).			
3.	-	ption from Question 2 to write a formula to calculate the total that would be laid on the <u>nth</u> day. Identify the constant and a your formula.				
	Total number of t	umber of tiles laid on <i>n</i> th day: (formula)				
4.	For each creator, describe whether you would categorize the number of tiles laid each day as "constant" or "variable." Explain how you made the determination.					
		Constant? Variable?	Explanation			
	Jebula (Red)					
	Maliba (Purple)					
	Noble (Green)					