Jesse D. Jones College of Science, Engineering and Technology

Claire Fuller, Interim Dean
201A Collins Center for Industry and Technology
(270) 809-2888

DEPARTMENTS

<table>
<thead>
<tr>
<th>Department</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences</td>
<td>172</td>
</tr>
<tr>
<td>Chemistry</td>
<td>181</td>
</tr>
<tr>
<td>Earth and Environmental Sciences</td>
<td>185</td>
</tr>
<tr>
<td>Institute of Engineering</td>
<td>192</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
<td>203</td>
</tr>
<tr>
<td>Occupational Safety and Health</td>
<td>207</td>
</tr>
</tbody>
</table>

PROGRAMS

UNDERGRADUATE

Associate
- Civil Engineering Technology
- Industrial Technology

Baccalaureate
- Applied Physics
- Biology
- Chemistry
- Civil Engineering Technology
- Earth and Environmental Sciences
- Electromechanical Engineering Technology
- Engineering Graphics and Design
- Engineering Physics
- Manufacturing Engineering Technology
- Mathematics
- Occupational Safety and Health
- Physics
- Telecommunications Systems Management
- Wildlife and Conservation Biology

Minor
- Actuarial Science
- Anthropology
- Applied Statistics
- Archaeology
- Astronomy
- Biology
- Cell Biology
- Chemistry
- Earth Science
- Engineering Science
- Environmental Geology
- Environmental Technology
- Geographic Information Science

Certificate
- Geographic Information Science

GRADUATE

Master's
- Applied Engineering and Technology Management
- Biology
- Chemistry
- Earth and Environmental Sciences
- Mathematics
- Occupational Safety and Health
- Sustainability Science
- Telecommunications Systems Management

Certificate
- Geospatial Data Science
Jesse D. Jones
College of Science, Engineering and Technology

The departments in the Jesse D. Jones College of Science, Engineering and Technology have a proud history of preparing students for careers in biology, chemistry, earth and environmental sciences, engineering, engineering technology, industrial technology, mathematics, occupational safety and health, physics, statistics, sustainability science, and telecommunications.

The college’s faculty are talented educators who make quality instruction a priority. They make themselves accessible to students and help them achieve their academic, professional, and career goals. Faculty continuously refine the curriculum which ensures that our degree programs are current and timely in addressing the needs and expectations of our students. The faculty are also recognized scholars who carry out interesting research projects with funding from a variety of national, state, and private agencies. Like some of the finest liberal arts colleges in the country, we use our research programs to enhance the learning environment for our undergraduate and graduate students. Many Murray State students have the opportunity to work side-by-side with faculty to solve some of the most interesting questions facing the scientific community today. Our students, both undergraduate and graduate, have published the results of their research in national journals and presented their work at regional and national conferences. In addition, students at Murray State have the opportunity to gain valuable hands-on experience through our co-op and internship programs. These kinds of experiences give our graduates the edge they need when applying for graduate school, professional school, or when entering the job market.

Our students study in comfortable, modern facilities, including the new Gene W. Ray science campus. The departments of biology and chemistry are housed in two beautiful state-of-the-art buildings, the Biology Building and Jesse D. Jones Hall. A third building housing the engineering and physics programs completes this attractive campus. The college also enjoys excellent facilities in the Collins Center for Industry and Technology, Faculty Hall, and Blackburn Science Building.

Murray State’s designation as a Commonwealth Center of Excellence for Reservoir Research and the Program of Distinction in Telecommunication Systems Management adds to our distinctiveness both in the state and in the national and international academic communities.

Your academic experience in our college will be different from that found at many universities. The student-centered faculty, excellent facilities, and attractive curricular tracks offered here will provide you with an education that you will value throughout your life and career.

Programs and Facilities
Program of Distinction in Telecommunication Systems Management. The telecommunications field, which incorporates networks of leading-edge technologies such as fiber optic systems, satellites, and wireless communication, and cybersecurity is rapidly changing and growing. The changes taking place in this field are dramatically influencing how individuals and institutions communicate and how they conduct business. Technological advances in the telecommunications area have profoundly affected government, retail, finance, health care, education, industry and entertainment sectors. Murray State’s exciting program in telecommunications systems management is helping prepare our graduates to become the leaders in this important emerging field.

Watershed Studies Institute. Murray State University hosts one of the five designated Centers of Excellence in the Commonwealth of Kentucky. With funding support from agencies like the National Science Foundation, Department of Energy, Environmental Protection Agency, Tennessee Valley Authority and the Kentucky Department for Natural Resources, Murray State’s research program in ecosystem sciences is both nationally and internationally recognized.

The Watershed Studies Institute provides outstanding research opportunities for scientists from around the world to study the region’s unique environment. The Institute also provides Murray State undergraduate and graduate students with an opportunity to engage in hands-on research with faculty who are at the vanguard of ecosystem science.

Three distinct components make up the Institute: the Hancock Biological Station (HBS), the Mapping Applications and Resource Center (MARC), and the Chemical Services Laboratory (CSL). The Institute’s primary mission is to provide the infrastructure, support, and intellect for education and research of watershed ecosystems.

• Mapping Applications and Resource Center. Since the late 1970s when Murray State was declared the Commonwealth’s technology transfer agent for NASA’s Landsat satellite, MARC has distinguished itself in the area of remote sensing and Geographic Information Systems (GIS). Students from around the world have received classroom instruction and have been mentored in research by the MARC Associates, a group of faculty and staff with expertise in a wide variety of application areas, many of which are focused on natural and cultural resource areas including land cover mapping, archaeological site analysis, mineral exploration, water quality and wildlife habitat mapping, emergency preparedness, and demographic modeling. Research projects have been conducted for local, state, and federal agencies, the private sector, and the university. MARC provides training in remote sensing and GIS and acts as a resource center for those within and beyond the university. MARC is one component of the Watershed Studies Institute and, as such, maintains a GIS for the lower reaches of the Kentucky Lake drainage basin.

• Hancock Biological Station. A year-round research and teaching facility located on beautiful Kentucky Lake, the HBS is one of the finest centers of its kind in the Midwest. HBS acts as the field research focal point for the Watershed Studies Institute and for the Ecological Consortium of Mid-America. The facilities, which include both faculty and student housing, are available year-round to all scientists interested in ecosystem research. Hancock Biological Station contains state-of-the-art laboratories for aquatic chemistry, scanning electron microscopy, ecology, wildlife and fisheries. A full-time technical staff operates the facilities. Field-oriented classes at the station attract students from around the nation. A wide variety of formal classes are offered each summer. These may include ecology, ornithology, limnology, field botany, stream ecology, reservoir ecology, scanning electron microscopy and vertebrate ecology. Independent research topics provide opportunities for individualized instruction and close interactions with researchers. Classes are open to undergraduates, graduate students, teachers and others interested in enhancing their knowledge of ecology, ecosystems and the natural environment.

• Chemical Services Laboratory. The Chemical Services Laboratory offers analytical laboratory services for industries and institutions in the west Kentucky and greater Ohio Valley region. Services include analyses for environmental chemistry, ecotoxicology, trace element, and acid-deposition studies. In addition to serving the needs of the region, this laboratory offers an opportunity for instruction and training at both the undergraduate and graduate levels.

Note: See page 58 for graduate courses notated with \(^1\) or \(^pt\).
Sustainability Studies Minor

The Sustainability Studies minor is an interdisciplinary exploration of sustainability issues focusing on the environment and/or sustainable development. Integrating knowledge and experiences from the sciences, engineering, agriculture, business, humanities, and arts, the minor is designed to complement any major area of study by focusing on ecological health, sustainable agriculture, and economic sustainability.

MINOR: Sustainability Studies

Total Minor Requirements .. 22-24 hrs

Required Courses ... 10 hrs
BIO 103 Saving Planet Earth
ENG 371 Literature and the Environment
IDC 150 Issues in Sustainability Studies
PHI 376 Environmental Ethics

Restricted Electives ... 6 hrs
Choose two of the following:
AGR 353 World Food, Agriculture and Society
CET 284 Sustainable Design and Construction
REC 450 Recreational Use of Natural Resources

Unrestricted Electives .. 6-8 hrs
Choose from the following with program coordinator approval:
AGR 345, 378, 455; ANT 320; ARC 314; BIO 112, 330, 506, 578; CHE 502, 513; ECO 345, 410; ENT 286; EES 424, 507; PSY 373; SOC 325, 380, 455.

Note: Six hours of the minor must be upper-level courses.

Sustainability Science
Graduate Coordinator - Howard Whiteman
(270) 809-6753

The Sustainability Science program is an interdisciplinary master’s program within the Jones College of Science, Engineering, and Technology designed to prepare students for careers in sustainability or closely related fields that have sustainability needs. The course of study allows specialization in one of four tracks: Agricultural Sustainability, Environmental Sustainability, Industrial and Technical Sustainability, and Sustainability Education. All students must complete a core curriculum, two restricted electives, and advanced courses in their area of interest.

Requirements for Admission
Applicants must meet all Murray State University requirements (see Graduate Admissions). Additional requirements for unconditional and conditional admission are listed below.

Unconditional
• Baccalaureate degree in science-related field.
• At least a 3.0 undergraduate GPA.
• Composite GRE score of at least 297 (148 verbal + 149 quantitative).
• International students: TOEFL score of at least 527; iBT TOEFL of 71; or IELTS score of 6.0.

Conditional
Recommendation of the advisory committee; international students must meet minimum testing scores described above.

Master of Science
Sustainability Science CIP 30.3301

Total Course Requirements .. 30-32 hours

Core Requirements ... 17 hrs
CET 687 Sustainable Environmental Technology
EES 601 Understanding Scientific Communication
EES 607 Land Use Planning
WSC 601 Seminar in Sustainability Science
WSC 693 Sustainability Practicum I
WSC 694 Sustainability Practicum II

Restricted Electives .. 6-7 hrs
Choose two of the following:
AGR 643 Sustainable Agriculture
ARC 615 Environmental Archaeology
BIO 665 Biogeochemistry
STA 665 Applied Statistics I

Unrestricted Electives .. 6-9 hrs
Choose elective hours from one of the following emphasis areas:

Agricultural Sustainability
AGR 636 Seminar in International Agriculture Systems
AGR 649 Weeds and Their Control
AGR 652 Agricultural Policy
AGR 655 Advanced Soil Fertility
AGR 661 Sustainable Agriculture
AGR 662 Principles of Agroecology
AGR 671 Advanced Precision Agriculture
AGR 674 Agricultural Irrigation and Water Systems
CHE 604 Fundamentals of Toxicology
CHE 613 Environmental Chemistry
EES 612 Remote Sensing
EES 621 Geographic Information Systems

Environmental Sustainability
AGR 662 Principles of Agroecology
ARC 610 Landscape Archaeology
ARC 615 Environmental Archaeology
BIO 635 Biogeography
BIO 642 Watershed Ecology
BIO 665 Biogeochemistry
BIO 675 Invasion Ecology
BIO 678 Conservation Biology
BIO 685 Restoration Ecology
BIO 690 Disturbance Ecology
CHE 604 Fundamentals of Toxicology
CHE 613 Environmental Chemistry
EES 612 Remote Sensing
EES 621 Geographic Information Systems

Industrial and Technical Sustainability
CET 655 Environmental Regulatory Affairs
CET 681 Pollution Assessment and Control
CET 682 Industrial Ecology
CET 686 Environmental Assessment and Remediation
CET 687 Sustainable Environmental Technology
CET 688 Waste Minimization and Pollution Prevention
CHE 600 Chemistry of Fuels
CHE 604 Fundamentals of Toxicology
CHE 613 Environmental Chemistry
IOE 619 Industrial Energy Management
OSH 622 Toxicology of Industrial Materials
OSH 646 Fundamentals of Risk Management
OSH 687 Wastewater Treatment
OSH 689 Solid and Hazardous Waste Management

Sustainability Education
EDU 615 Introduction to Environmental Education
EDU 664 Techniques of Teaching Environmental Education
EDU 665 Field Experiences in Environmental Education
EDU 667 International Environmental Education
EDU 668 Agriculture and the Environment in the Classroom

Department of Biological Sciences
2112 Biology Building
270-809-2706

The Department of Biological Sciences offers baccalaureate programs with a major in biology (pre-medicine, pre-dentistry, pre-optometry, pre-physical therapy, pre-physician assistant, fisheries, aquatic biology, secondary certification, and watershed science tracks are available) or an area of concentration in wildlife and conservation biology. These programs are designed to prepare students for professional or graduate work in the life sciences, such as the M.S. in biology offered by the department. Curricula provide students with a basic core of science courses plus advanced biology courses in their particular field of interest. The department also offers a two-year, pre-professional program in pharmacy and a minor in biology.

The department has offices, classrooms, laboratories, and research facilities in the Biology Building and on the second floor of the newly constructed Engineering and Physics Building. The department also has two off-campus resources which are utilized in field-oriented teaching and research programs. One of these, Murphy's Pond, is a 300-acre preserve in Hickman County with one of the few remaining cypress swamps in western Kentucky. The other, Hancock Biological Station, is a modern classroom/laboratory complex located on the western shore of Kentucky Lake, 17 miles from the main campus. The station is ideally located in an area of diverse aquatic habitats and is the focal point for the reservoir research on Kentucky Lake and Lake Barkley.

MAJOR:
Biology
Bachelor of Science/Bachelor of Arts CIP 26.0101

University Studies Requirements: 38-44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 CHE 201 General College Chemistry
 CHE 202 General Chemistry and Qualitative Analysis
 MAT 150 Algebra and Trigonometry
 or
 MAT 250 Calculus and Analytic Geometry I
• University Studies Electives
 PHY 130 General Physics I
 PHY 131 General Physics I Laboratory
 or

Required Courses .. 41 hrs
BIO 100T Transitions
BIO 115 The Cellular Basis of Life
BIO 216 Biological Inquiry and Analysis
BIO 221 Zoology: Animal Form and Function
BIO 222 Botany: Plant Form and Function
BIO 305 Introduction to Evolutionary Principles
BIO 330 Principles of Ecology
BIO 333 Genetics
BIO 499 Senior Biology Seminar
BIO electives, 300-level or above (13 hrs)

Co-Requirements for Biology Major: 7-8 hrs
Group 1:
 CHE 312 Organic Chemistry I
 CHE 320 Organic Chemistry II

or Group 2:
 CHE 210 Brief Organic Chemistry
 CHE 215 Chemistry Laboratory
 CHE 330 Basic Biochemistry

Required Minor: ... 3-21 hrs

Unrestricted Electives .. 17-28 hrs

Total Curriculum Requirements: 120 hrs

May be used to fulfill University Studies requirements.

A maximum of three hours total from BIO 391, 392, 483, 484, 489, 493, 494 may be used. BIO 488 will not count here.

This course does not apply toward the chemistry minor.

Chemistry co-requirements may apply toward the requirements for a minor in chemistry.

AREA:
Biology/Biomedical Sciences Track
Bachelor of Science/Bachelor of Arts CIP 26.0101

University Studies Requirements: 42-43 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 CHE 201 General College Chemistry
 MAT 250 Calculus and Analytic Geometry I
 PHY 130 General Physics I
 PHY 131 General Physics I Laboratory

• University Studies Electives
 CHE 202 General Chemistry and Qualitative Analysis

Required Courses .. 47 hrs
BIO 100T Transitions
BIO 115 The Cellular Basis of Life
BIO 216 Biological Inquiry and Analysis
BIO 221 Zoology: Animal Form and Function
BIO 222 Botany: Plant Form and Function
BIO 290 Biomedical Research I
BIO 300 Introductory Microbiology
BIO 321 Cell Biology: Mechanisms
BIO 332 Cell Biology: Systems
BIO 322 Animal Physiology
BIO 333 Genetics

Scientific Inquiry, Methodologies, and Quantitative Skills
CHE 201 General College Chemistry
MAT 250 Calculus and Analytic Geometry I
PHY 130 General Physics I
PHY 131 General Physics I Laboratory

University Studies Electives
CHE 202 General Chemistry and Qualitative Analysis

Required Courses .. 47 hrs
BIO 100T Transitions
BIO 115 The Cellular Basis of Life
BIO 216 Biological Inquiry and Analysis
BIO 221 Zoology: Animal Form and Function
BIO 222 Botany: Plant Form and Function
BIO 290 Biomedical Research I
BIO 300 Introductory Microbiology
BIO 321 Cell Biology: Mechanisms
BIO 332 Cell Biology: Systems
BIO 322 Animal Physiology
BIO 333 Genetics
BIO 388 Biomedical Research II
BIO 389 Biomedical Research III
BIO 438 Biomedical Research IV
BIO 439 Biomedical Research V
BIO 499 Senior Biology Seminar
BIO 533 Molecular Genetics

Co-Requirements for Area .. 18 hrs
CHE 312 Organic Chemistry I
CHE 320 Organic Chemistry II
CHE 530 Fundamentals of Biochemistry I
CHE 540 Fundamentals of Biochemistry II
PHY 132 General Physics II1,3
PHY 133 General Physics II Laboratory1,3

Restricted Electives ... 15 hrs
Choose from the following:
BIO 308 Ethics in Biology1
BIO 320 Comparative Vertebrate Anatomy
BIO 321 Cell Biology: Mechanisms4
or
BIO 323 Cell Biology: Systems4
BIO 421 Vertebrate Histology
BIO 501 Immunology
BIO 504 Medical Cell Biology
BIO 521 Cell Biology Laboratory
BIO 528 Neurobiology
BIO 534 Molecular Genetics Laboratory
BIO 597 Topics in Advanced Molecular Biology
CHE 305 Analytical Chemistry
CHE 325 Organic Chemistry II Laboratory
CHE 403 Basic Physical Chemistry
PHY 370 Introduction to Modern Physics

Total Curriculum Requirements 120 hrs

1 A freshman must have a math ACT score of 25 or higher to declare a major in Biomedical Sciences. However, any student may apply to the program and must have completed 32 credit hours with a GPA of 3.0, and must have taken BIO 115, 216, CHE 201, 202 and MAT 250 with grades of B or better. Any student wishing to seek this degree (whether declared as a freshman or not) must apply to the Biomedical Sciences committee for admission into the program.
2 Required for area if not taken as a University Studies elective.
3 Required to fulfill University Studies requirements.
4 Required for area as either Core choice or as a Restricted Elective.

MAJOR:
Biology/Pre-Medical/Pre-Dental Track
Bachelor of Science/Bachelor of Arts CIP 26.0101

University Studies Requirements 42-43 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 CHE 201 General College Chemistry
 MAT 150 Algebra and Trigonometry
 or
 MAT 250 Calculus and Analytic Geometry I
 PHY 130 General Physics I
 PHY 131 General Physics I Laboratory
 or
 PHY 235 Mechanics, Heat and Wave Motion
 PHY 236 Mechanics, Heat and Wave Motion Laboratory
• Social and Self-Awareness and Responsible Citizenship
 PSY 180 General Psychology (recommended)

• University Studies Electives
 CHE 202 General Chemistry and Qualitative Analysis

Required Courses ... 40 hrs
BIO 100T Transitions
BIO 115 The Cellular Basis of Life
BIO 216 Biological Inquiry and Analysis1
BIO 221 Zoology: Animal Form and Function1
BIO 222 Botany: Plant Form and Function1
BIO 321 Cell Biology: Mechanisms
 or
 BIO 323 Cell Biology: Systems
BIO 322 Animal Physiology
BIO 333 Genetics
BIO 499 Senior Biology Seminar
BIO electives, 300-level or above (12 hrs)2

Co-Requirements for Biology Major 12 hrs
CHE 312 Organic Chemistry I
CHE 320 Organic Chemistry II
PHY 132 General Physics II1
 or
PHY 133 General Physics II Laboratory1
 or
PHY 255 Electricity, Magnetism and Light3 and
PHY 256 Electricity, Magnetism and Light Laboratory3

Required Minor3 .. 3-21 hrs

Unrestricted Electives4 .. 8-21 hrs

Total Curriculum Requirements 120 hrs

1 May be used to fulfill University Studies requirements.
2 A maximum of three hours total from BIO 391, 392, 483, 484, 489, 493, 494 may be used. BIO 488 will not count here.
3 Chemistry co-requirements may apply toward chemistry minor.
4 ENG 204 strongly recommended. Electives other than ENG 204 must be at the 300-level or above.

MAJOR:
Biology/Pre-Optometry Track
Bachelor of Science/Bachelor of Arts GIP 26.0101

University Studies Requirements 41-42 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 MAT 250 Calculus and Analytic Geometry I
 PHY 130 General Physics I
 PHY 131 General Physics I Laboratory
 or
 PHY 235 Mechanics, Heat and Wave Motion
 PHY 236 Mechanics, Heat and Wave Motion Laboratory
 or
 PHY 255 Electricity, Magnetism and Light
 PHY 256 Electricity, Magnetism and Light Laboratory
• Social and Self-Awareness and Responsible Citizenship
 PSY 180 General Psychology
• University Studies Electives
 CHE 201 General College Chemistry

Required Courses ... 41 hrs
BIO 100T Transitions
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 115</td>
<td>The Cellular Basis of Life</td>
</tr>
<tr>
<td>BIO 216</td>
<td>Biological Inquiry and Analysis(^1)</td>
</tr>
<tr>
<td>BIO 221</td>
<td>Zoology: Animal Form and Function(^1)</td>
</tr>
<tr>
<td>BIO 222</td>
<td>Botany: Plant Form and Function(^1)</td>
</tr>
<tr>
<td>BIO 300</td>
<td>Introductory Microbiology</td>
</tr>
<tr>
<td>BIO 322</td>
<td>Animal Physiology</td>
</tr>
<tr>
<td>BIO 333</td>
<td>Genetics</td>
</tr>
<tr>
<td>BIO 499</td>
<td>Senior Biology Seminar</td>
</tr>
<tr>
<td>BIO electives, 300-level or above (12 hrs)(^2)</td>
<td></td>
</tr>
</tbody>
</table>

Co-Requirements for Biology Major

- CHE 202 General Chemistry and Qualitative Analysis\(^3\)
- CHE 312 Organic Chemistry I
- CHE 320 Organic Chemistry II
- CHE 330 Basic Biochemistry
- CHE 530 Fundamentals of Biochemistry I
- ENG 204 Advanced Expository Writing\(^4\)
- STA 135 Introduction to Probability and Statistics\(^3\)

Required Minor\(^2\)

Unrestricted Electives

Total Curriculum Requirements

1. May be used to fulfill University Studies requirements.
2. A maximum of three hours total from BIO 391, 392, 483, 484, 489, 493, 494 may be used. BIO 488 will not count here.
3. Chemistry co-requirements may apply toward chemistry minor.

MAJOR:

Biology/Pre-Physical Therapy Track

Bachelor of Science/Bachelor of Arts CIP 26.0101

University Studies Requirements

(See Academic Degrees and Programs.)

University Studies selections must include:

- **Scientific Inquiry, Methodologies, and Quantitative Skills**
- CHE 201 General College Chemistry
- MAT 150 Algebra and Trigonometry
- or
- MAT 250 Calculus and Analytic Geometry I
- PHY 130 General Physics I
- PHY 131 General Physics I Laboratory
- **Social and Self-Awareness and Responsible Citizenship**
- PSY 180 General Psychology
- or
- **University Studies Electives**
- CHE 202 General Chemistry and Qualitative Analysis

Required Courses

- BIO 100T Transitions
- BIO 115 The Cellular Basis of Life
- BIO 216 Biological Inquiry and Analysis\(^1\)
- BIO 120 Scientific Etymology
- BIO 221 Zoology: Animal Form and Function\(^1\)
- BIO 222 Botany: Plant Form and Function\(^1\)
- BIO 220 Clinical Terminology
- BIO 300 Introductory Microbiology
- or
- BIO 321 Cell Biology: Mechanisms
- BIO 320 Comparative Vertebrate Anatomy
- or
- BIO 227 Human Anatomy

Co-Requirements for Biology Major

24-25 hrs

- BIO 228 Human Anatomy Laboratory
- BIO 322 Animal Physiology
- BIO 333 Genetics
- BIO 499 Senior Biology Seminar
- BIO electives, approved by advisor, 300-level or above (9 hrs)\(^2\)

(If BIO 320 is taken, only four hours of 300-level or above.)

Co-Requirements for Biology Major

- CHE 202 General Chemistry and Qualitative Analysis\(^3\)
- CHE 312 Organic Chemistry I
- CHE 320 Organic Chemistry II
- PSY 300 Principles and Methods of Statistical Analysis
- or
- STA 135 Introduction to Probability and Statistics\(^3\)
- PHY 132 General Physics II\(^1\)
- PHY 133 General Physics II Laboratory\(^1\)
- PSY 260 Lifespan Development
- SOC 133 Introduction to Sociology\(^1\)

Required Minor\(^3\)

Unrestricted Electives

Total Curriculum Requirements

1. May be used to fulfill University Studies requirements.
2. A maximum of three hours total from BIO 391, 392, 483, 484, 489, 493, 494 may be used. BIO 488 will not count here.
3. Chemistry co-requirements may apply toward chemistry minor.

MAJOR:

Biology/Pre-Physician Assistant Track

Bachelor of Science/Bachelor of Arts CIP 26.0101

University Studies Requirements

(See Academic Degrees and Programs.)

University Studies selections must include:

- **Scientific Inquiry, Methodologies, and Quantitative Skills**
- CHE 201 General College Chemistry
- MAT 150 Algebra and Trigonometry
- or
- MAT 250 Calculus and Analytic Geometry I
- PHY 130 General Physics I
- PHY 131 General Physics I Laboratory
- **Social and Self-Awareness and Responsible Citizenship**
- PSY 180 General Psychology
- or
- **University Studies Electives**
- CHE 202 General Chemistry and Qualitative Analysis

Required Courses

- BIO 100T Transitions
- BIO 115 The Cellular Basis of Life
- BIO 216 Biological Inquiry and Analysis\(^1\)
- BIO 120 Scientific Etymology
- BIO 221 Zoology: Animal Form and Function\(^1\)
- BIO 222 Botany: Plant Form and Function\(^1\)
- BIO 220 Clinical Terminology
- BIO 300 Introductory Microbiology
- or
- BIO 321 Cell Biology: Mechanisms
- BIO 320 Comparative Vertebrate Anatomy
- or
- BIO 227 Human Anatomy

Co-Requirements for Biology Major

40 hrs

- BIO 228 Human Anatomy Laboratory
- BIO 322 Animal Physiology
- BIO 333 Genetics
- BIO 499 Senior Biology Seminar
- BIO electives, approved by advisor, 300-level or above (9 hrs)\(^2\)

(If BIO 320 is taken, only four hours of 300-level or above.)
BIO 499 Senior Biology Seminar
BIO electives, 300-level or above (10 hrs)\[BIO 488 and 489 will not count here.\]

Co-Requirements for Biology Major............................... 18-20 hrs
BIO 227 Human Anatomy
BIO 228 Human Anatomy Laboratory
BIO 229 Human Physiology
BIO 230 Human Physiology Laboratory
CHE 210 Brief Organic Chemistry
and
CHE 215 Organic Chemistry Laboratory
or
CHE 312 Organic Chemistry I

Required Minor............................... 6-21 hrs

Unrestricted Electives............................... 0-14 hrs

Total Curriculum Requirements............................... 120 hrs

\[May be used to fulfill University Studies requirements.\]

\[A maximum of three hours total from BIO 391, 392, 483, 484, 489, 493, 494 may be used. BIO 488 will not count here.\]

\[Chemistry co-requirements may apply toward chemistry minor.\]

AREA:
Biology/Fisheries and Aquatic Biology Track
Bachelor of Science/Bachelor of Arts CIP 26.0101

University Studies Requirements............................... 43 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
Scientific Inquiry, Methodologies, and Quantitative Skills
CHE 201 General College Chemistry
MAT 150 Algebra and Trigonometry
and
MAT 250 Calculus and Analytic Geometry I
PHY 130 General Physics I
PHY 131 General Physics I Laboratory

Social and Self-Awareness and Responsible Citizenship
One of the following:
BIO 103 Saving Planet Earth
BIO 308 Ethics in Biology
COM 260 Communication Ethics
PHI 202 Ethics
POL 140 American National Government

University Studies Electives
STA 135 Introduction to Probability and Statistics
and one of the following:
COM 131 Interpersonal Communication
ENG 224 Writing in the Professions

Required Courses............................... 71-79 hrs
BIO 100T Transitions
BIO 115 The Cellular Basis of Life\[1\]
BIO 216 Biological Inquiry and Analysis
BIO 221 Zoology: Animal Form and Function
BIO 222 Botany: Plant Form and Function
BIO 240 Biological Applications of GIS
or
EES 202 Introduction to GIS

BIO 330 Principles of Ecology
BIO 333 Genetics
BIO 499 Senior Biology Seminar
BIO 549 Fisheries Techniques
BIO 570 Ichthyology
BIO 578 Conservation Biology
or
BIO 584 Wildlife Policy and Administration
BIO 582 Fisheries Management
BIO 586 Limnology
or
BIO 588 Reservoir Ecology
CHE 202 General Chemistry and Qualitative Analysis
CHE 210 Brief Organic Chemistry
CHE 215 Brief Organic Chemistry Laboratory

and four of the following not selected previously:
BIO 305 Introduction to Evolutionary Principles
BIO 467 Parasitology
BIO 493 Undergraduate Research III
BIO 542 Watershed Ecology
BIO 546 Stream Ecology
BIO 561 Freshwater Invertebrates
BIO 563 Aquatic Entomology
BIO 568 Wetland Ecology
BIO 572 Herpetology
BIO 573 Ornithology
BIO 574 Mammalogy
BIO 578 Conservation Biology
BIO 584 Wildlife Policy and Administration
BIO 586 Limnology
BIO 587 Freshwater Ecology
BIO 588 Reservoir Ecology
BIO 595 Internship

and 3-5 credits from the following:
AGR 328 Statistics for Food and Agriculture
AGR 345 Soil Science
and
AGR 346 Soil Science Lab
CHE 330 Biochemistry
CSC 101 Introduction to Problem Solving using Computers
EES 125 Weather and Climate
EES 199 Earth Science
EES 200 Introduction to Oceanography
EES 210 Hydrology
EES 303 Introduction to Water Science
EES 305 Introduction to Cartography
EES 312 Introduction to Remote Sensing
EES 314 Sediments and Soils
EES 424 Conservation and Environmental Geosciences
EES 512 Remote Sensing
EES 521 Geographic Information Systems
MAT 250 Calculus and Analytic Geometry \[1\]
PHY 235 Mechanics, Heat and Wave Motion
PHY 255 Electricity, Magnetism, and Light
PSY 300 Principles and Methods of Statistical Analysis
STA 235 Introduction to Probability and Statistics

Unrestricted Electives............................... 0-6 hrs

Total Curriculum Requirements............................... 120 hrs

\[1\]Upon completion of the Fisheries and Aquatic Biology track, students can be certified by the American Fisheries Society (if MAT 250 is taken as part of the program.)
MAJOR:
Biology/Secondary Certification (Grades 8-12) Track
Bachelor of Science/Bachelor of Arts CIP 26.0101

University Studies Requirements ... 43-44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• **Scientific Inquiry, Methodologies, and Quantitative Skills**
 CHE 201 General College Chemistry
 CHE 202 General Chemistry and Qualitative Analysis
 MAT 150 Algebra and Trigonometry

• **University Studies Electives**
 PHY 130 General Physics I
 PHY 131 General Physics I Laboratory
 Note: Certification requires a grade of B or better in one English composition course and a B or better in a University Studies math course, public speaking, and EDU 180 or equivalent course. Additional requirements for admission to teacher education and student teaching must be met. See advisor and/or Office of Teacher Education Services for details.

Required Courses .. 38 hrs

BIO 100T Transitions
BIO 115 The Cellular Basis of Life
BIO 216 Biological Inquiry and Analysis
BIO 221 Zoology: Animal Form and Function
BIO 222 Botany: Plant Form and Function
BIO 300 Introductory Microbiology
BIO 320 Comparative Vertebrate Anatomy
BIO 322 Animal Physiology
BIO 330 Principles of Ecology
BIO 333 Genetics
BIO 499 Senior Biology Seminar

Chemistry Requirement

Group 1:
CHE 312 Organic Chemistry I
CHE 320 Organic Chemistry II

or Group 2:
CHE 210 Brief Organic Chemistry
CHE 215 Brief Organic Chemistry Laboratory
CHE 330 Basic Biochemistry

Physics Requirement

PHY 132 General Physics II
PHY 133 General Physics II Laboratory

Required for Secondary Certification 33 hrs

EDU 180 Exploring the Teaching Profession
EDU 280 Educating for Human Development
EDU 380 Inclusive Teaching of Diverse Learners
EDU 480 Effective Pedagogy
EDU 485 Professional Perspectives for Teaching
SEC 420 Practicum in Secondary Schools
SEC 421 Student Teaching in the Secondary School
SEC 422 Extended Practicum

Required Minor ... 3-21 hrs

Total Curriculum Requirements 128-148 hrs

1PHY 235 and 236 will also meet this requirement.
2May be used to fulfill University Studies requirements.
3This course does not apply toward the chemistry minor.
4PHY 255 and 256 will also meet this requirement.
5PRAXIS Exam required during last semester before student teaching. Certification requires a grade of B or better in one English composition course and a grade of B or better in a University Studies math course, public speaking, and EDU 180 or equivalent course. Additional requirements for admission to teacher education and student teaching must be met. See advisor and/or Office of Teacher Education Services for details.
6EDU 480 and SEC 420 must be taken together two semesters before student teaching.
7Must be taken one semester before student teaching.
8Chemistry co-requirements may apply toward chemistry minor.

AREA:
Wildlife and Conservation Biology/Conservation Biology Track
Bachelor of Science/Bachelor of Arts CIP 03.0601

University Studies Requirements ... 42-43 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• **Global Awareness, Cultural Diversity, and the World’s Artistic Traditions**

Core Courses .. 62-65 hrs

BIO 100T Transitions
BIO 115 The Cellular Basis of Life
BIO 149 Introduction to Wildlife and Conservation Biology
BIO 221 Zoology: Animal Form and Function
BIO 222 Botany: Plant Form and Function
BIO 310 Vertebrate Natural History
BIO 330 Principles of Ecology
BIO 333 Genetics
BIO 380 Wildlife Techniques
BIO 499 Senior Biology Seminar
BIO 578 Conservation Biology
BIO 580 Principles of Wildlife Management
BIO 584 Wildlife Policy and Administration
BIO 594 Dendrology and Forest Conservation

or

BIO 350 Systematic Botany

and one of the following:

BIO 100T Transitions
BIO 115 The Cellular Basis of Life
BIO 149 Introduction to Wildlife and Conservation Biology
BIO 221 Zoology: Animal Form and Function
BIO 222 Botany: Plant Form and Function
BIO 310 Vertebrate Natural History
BIO 330 Principles of Ecology
BIO 333 Genetics
BIO 350 Systematic Botany

and one of the following:

BIO 380 Wildlife Techniques
BIO 499 Senior Biology Seminar
BIO 578 Conservation Biology
BIO 580 Principles of Wildlife Management
BIO 584 Wildlife Policy and Administration
BIO 594 Dendrology and Forest Conservation

or

BIO 350 Systematic Botany

and one of the following:

BIO 380 Wildlife Techniques
BIO 499 Senior Biology Seminar
BIO 578 Conservation Biology
BIO 580 Principles of Wildlife Management
BIO 584 Wildlife Policy and Administration
BIO 594 Dendrology and Forest Conservation

University Studies Electives

ENG 224 Writing for the Professions

University Studies Electives

ENG 224 Writing for the Professions
AGR 455 Soil Management
CHE 210 Brief Organic Chemistry
CHE 215 Organic Chemistry Laboratory
EES 199 Earth Science
EES 314 Sediments and Soils
PHY 130 General Physics I
PHY 131 General Physics I Laboratory

Conservation Biology Track.. 17 hrs
EES 202 Introduction to Geographical Information Science
and one of the following:
ECO 310 Issues in the Global Economy
ECO 345 Environmental Economics

and a minimum of ten hours from the following:²
ANT 320 Human Ecology
BIO 240 Biological Applications in GIS
BIO 300 Introductory Microbiology
BIO 308 Ethics in Biology
BIO 525 Biogeography
BIO 548 Principles of Managing Diseases in Wildlife
BIO 568 Wetland Ecology
BIO 570 Ichthyology
BIO 572 Herpetology
BIO 573 Ornithology
BIO 574 Mammalogy
BIO 577 Population and Conservation Genetics
BIO 581 Applied Wildlife Economics, Policy, and Administration
BIO 590 Disturbance Ecology
EES 312 Introduction to Remote Sensing
EES 350 Field Techniques in Geosciences
EES 512 Geographic Information Systems
PLN 507 Land Use Planning
SOC 455 Environmental Sociology

Total Curriculum Requirements .. 121-125 hrs
¹Meets course requirements for Associate Wildlife Biologist Certification from The Wildlife Society.
²Only one course from BIO 572, 573, and 574 (if not taken as a core course) will count toward this requirement.

AREA:
Wildlife and Conservation Biology/
Conservation Education and Interpretation Track
Bachelor of Science/Bachelor of Arts CIP 03.0601

University Studies Requirements 42-43 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
•Scientific Inquiry, Methodologies, and Quantitative Skills
STA 135 Introduction to Probability and Statistics
CHE 105 Introductory Chemistry
or
CHE 201 General College Chemistry
MAT 150 Algebra and Trigonometry
or
MAT 250 Calculus and Analytical Geometry I
•Social and Self-Awareness and Responsible Citizenship
EDP 260 Psychology of Human Development
HIS 221 American Experience to 1865
or

Core Courses¹ .. 62-65 hrs
BIO 216 Biological Inquiry and Analysis
ENG 224 Writing for the Professions

Conservation Education and Interpretation Track 17 hrs
EDU 404 Teaching Environmental Education
REC 202 Recreation Program Planning

and a minimum of 13 hours from the following:²
BIO 240 Biological Applications in GIS
BIO 525 Biogeography
BIO 542 Watershed Ecology
BIO 546 Stream Ecology
BIO 561 Freshwater Invertebrates
BIO 563 Aquatic Entomology
BIO 564 Entomology
BIO 568 Wetland Ecology
BIO 570 Ichthyology
BIO 572 Herpetology
BIO 573 Ornithology
BIO 574 Mammalogy
BIO 590 Disturbance Ecology
EES 202 Introduction to Geographical Information Science
EES 306 Landscapes of the National Parks
EES 350 Field Techniques in Geosciences
EES 512 Remote Sensing
EES 521 Geographic Information Systems
PLN 507 Land Use Planning
REC 411 Curriculum Development in Adventure Education
REC 450 Recreational Use of Natural Resources
REC 465 Interpretation of Cultural and Natural Resources

Total Curriculum Requirements 121-125 hrs
1Meets course requirements for Associate Wildlife Biologist Certification from The Wildlife Society.
2Only one course from BIO 572, 573, and 574 (if not taken as a core course) will count toward this requirement.

AREA:
Wildlife and Conservation Biology/Conservation Law Enforcement Track
Bachelor of Science/Bachelor of Arts CIP 03.0601

University Studies Requirements 42-43 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 STA 135 Introduction to Probability and Statistics
 CHE 105 Introductory Chemistry
 or
 CHE 201 General College Chemistry
 MAT 150 Algebra and Trigonometry
 or
 MAT 250 Calculus and Analytical Geometry I
• Social and Self-Awareness and Responsible Citizenship
 CRJ 140 Introduction to Criminal Justice
 PSY 180 General Psychology
• University Studies Electives
 BIO 216 Biological Inquiry and Analysis
 ENG 224 Writing for the Professions

Core Courses 1 .. 62-65 hrs
 BIO 100T Transitions
 BIO 115 The Cellular Basis of Life
 BIO 149 Introduction to Wildlife and Conservation Biology
 BIO 221 Zoology: Animal Form and Function
 BIO 222 Botany: Plant Form and Function
 BIO 310 Vertebrate Natural History
 BIO 330 Principles of Ecology
 BIO 333 Genetics
 BIO 380 Wildlife Techniques
 BIO 499 Senior Biology Seminar
 BIO 578 Conservation Biology
 BIO 580 Principles of Wildlife Management
 BIO 584 Wildlife Policy and Administration
 BIO 554 Forestry and Wildlife Management
 BIO 350 Systematic Botany
 or
 BIO 553 Field Botany
 and one of the following:
 BIO 382 Scientific Communication for the Biologist
 ENG 324 Technical Writing
 and one of the following:
 BIO 572 Herpetology
 BIO 573 Ornithology
 BIO 574 Mammalogy
 and two of the following:
 AGR 345 Soil Science
 AGR 350 Soil Survey
 AGR 455 Soil Management
 CHE 210 Brief Organic Chemistry
 or
 CHE 215 Organic Chemistry Laboratory
 EES 199 Earth Science
 EES 314 Sediments and Soils
 PHY 130 General Physics I
 and
 PHY 131 General Physics I Laboratory

Conservation Law Enforcement Track 17 hrs
 CRJ 220 Law Enforcement
 CRJ 300 Criminal Justice
 and a minimum of eleven hours from the following 2
 BIO 240 Biological Applications in GIS
 BIO 548 Principles of Managing Diseases in Wildlife
 BIO 570 Ichthyology
 BIO 572 Herpetology
 BIO 573 Ornithology
 BIO 574 Mammalogy
 BIO 581 Applied Wildlife Economics, Policy, and Administration
 BIO 582 Fisheries Management
 CRJ 240 Corrections
 CRJ 346 Crime Investigation
 CRJ 365 Interviewing and Interrogation
 CRJ 445 Criminal Justice Diversity
 EES 202 Introduction to Geographical Information Science
 REC 465 Interpretation of Cultural and Natural Resources

Total Curriculum Requirements 121-125 hrs
1Meets course requirements for Associate Wildlife Biologist Certification from The Wildlife Society.
2Only one course from BIO 572, 573, and 574 (if not taken as a core course) will count toward this requirement.

AREA:
Wildlife and Conservation Biology/Wildlife Biology Track
Bachelor of Science/Bachelor of Arts CIP 03.0601

University Studies Requirements 42-43 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 STA 135 Introduction to Probability and Statistics
 CHE 105 Introductory Chemistry
 or
 CHE 201 General College Chemistry
 MAT 150 Algebra and Trigonometry
 or
 MAT 250 Calculus and Analytical Geometry I
• Social and Self-Awareness and Responsible Citizenship
 ECO 231 Principles of Microeconomics
• University Studies Electives
 BIO 216 Biological Inquiry and Analysis
 ENG 224 Writing for the Professions

Core Courses 1 .. 62-65 hrs
 BIO 100T Transitions
 BIO 115 The Cellular Basis of Life
 BIO 149 Introduction to Wildlife and Conservation Biology
BIO 221 Zoology: Animal Form and Function
BIO 222 Botany: Plant Form and Function
BIO 310 Vertebrate Natural History
BIO 330 Principles of Ecology
BIO 333 Genetics
BIO 380 Wildlife Techniques
BIO 499 Senior Biology Seminar
BIO 578 Conservation Biology
BIO 580 Principles of Wildlife Management
BIO 584 Wildlife Policy and Administration
BIO 554 Dendrology and Forest Conservation
BIO 350 Systematic Botany
BIO 553 Field Botany
and one of the following:
BIO 382 Scientific Communication for the Biologist
ENG 324 Technical Writing
and one of the following:
BIO 572 Herpetology
BIO 573 Ornithology
BIO 574 Mammalogy
and two of the following:
AGR 345 Soil Science
AGR 350 Soil Survey
AGR 455 Soil Management
CHE 210 Brief Organic Chemistry
and
CHE 215 Organic Chemistry Laboratory
EES 199 Earth Science
EES 314 Sediments and Soils
PHY 130 General Physics I
and
PHY 131 General Physics I Laboratory

Wildlife Biology Track ... 17 hrs
EES 202 Introduction to Geographical Information Science and a minimum of 13 hours from the following:2
AGR 240 Crop Science
BIO 240 Biological Applications in GIS
BIO 320 Comparative Vertebrate Anatomy
BIO 525 Biogeography
BIO 548 Principles of Managing Diseases in Wildlife
BIO 568 Wetland Ecology
BIO 570 Ichthyology
BIO 572 Herpetology
BIO 573 Ornithology
BIO 574 Mammalogy
BIO 577 Population and Conservation Genetics
BIO 581 Applied Wildlife Economics, Policy, and Administration
BIO 582 Fisheries Management
EDU 404 Teaching Environmental Education
EES 312 Introduction to Remote Sensing
EES 512 Remote Sensing
EES 521 Geographic Information Systems
MAT 554 Statistical Methods
PLN 507 Urban and Regional Land Use Planning
REC 465 Interpretation of Cultural and Natural Resources

Total Curriculum Requirements 121-125 hrs
1 Meets course requirements for Associate Wildlife Biologist Certification from The Wildlife Society.
2 Only one course from BIO 570, 572, 573, and 574 (if not taken as a core course) will count toward this requirement.

AREA:
Wildlife and Conservation Biology/
Zoological Conservation Track
Bachelor of Science/Bachelor of Arts CIP 03.0601

University Studies Requirements 42-43 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 STA 135 Introduction to Probability and Statistics
 CHE 105 Introductory Chemistry
 or
 CHE 201 General College Chemistry
 MAT 150 Algebra and Trigonometry
 or
 MAT 250 Calculus and Analytical Geometry I

• University Studies Electives
 BIO 216 Biological Inquiry and Analysis
 ENG 224 Writing for the Professions
Core Courses ... 62-65 hrs
BIO 100T Transitions
BIO 115 The Cellular Basis of Life
BIO 149 Introduction to Wildlife and Conservation Biology
BIO 221 Zoology: Animal Form and Function
BIO 222 Botany: Plant Form and Function
BIO 310 Vertebrate Natural History
BIO 330 Principles of Ecology
BIO 333 Genetics
BIO 380 Wildlife Techniques
BIO 499 Senior Biology Seminar
BIO 578 Conservation Biology
BIO 580 Principles of Wildlife Management
BIO 584 Wildlife Policy and Administration
BIO 554 Dendrology and Forest Conservation
and
BIO 350 Systematic Botany
or
BIO 553 Field Botany
and one of the following:
BIO 382 Scientific Communication for the Biologist
ENG 324 Technical Writing
and one of the following:
BIO 572 Herpetology
BIO 573 Ornithology
BIO 574 Mammalogy
and two of the following:
AGR 345 Soil Science
AGR 350 Soil Survey
AGR 455 Soil Management
CHE 210 Brief Organic Chemistry
and
CHE 215 Organic Chemistry Laboratory
EES 199 Earth Science
EES 314 Sediments and Soils
PHY 130 General Physics I
and
PHY 131 General Physics I Laboratory

Zoological Biology Track .. 17 hrs
AGR 300 Principles of Animal Nutrition
AGR 310 Applications in Animal Technology
AGR 322 Veterinary Laboratory Principles
EDU 404 Teaching Environmental Education
and a minimum of seven hours from the following:
AGR 324 Veterinary Diagnostic Imaging
AGR 329 Veterinary Hematology and Microbiology
AGR 332 Veterinary Nursing
BIO 240 Biological Applications in GIS
BIO 300 Introductory Microbiology
BIO 322 Animal Physiology
BIO 467 General Parasitology
BIO 538 Animal Behavior
BIO 539 Animal Behavior Laboratory
BIO 548 Principles of Managing Diseases in Wildlife
BIO 570 Ichthyology
BIO 572 Herpetology
BIO 573 Ornithology
BIO 574 Mammalogy
BIO 577 Population and Conservation Genetics
REC 465 Interpretation of Cultural and Natural Resources

Total Curriculum Requirements .. 121-125 hrs
*Meets course requirements for Associate Wildlife Biologist Certification from The Wildlife Society.
*Only one course from BIO 572, 573, and 574 (if not taken as a core course) will count toward this requirement.

Biology Minor .. 21 hrs
Complete BIO 115, 216, and either 221 or 222 (or both). Remaining BIO hours should be chosen with advisor’s approval (BIO 330 and 333 are highly recommended). A maximum of three hours total from BIO 391, 392, 483, 484, 493, or 494 may be used. BIO 101, 488, 489, and 499 will not count toward this minor. Six hours must be upper-level (300 and greater) courses.

Cell Biology Minor .. 22-24 hrs
BIO 115, 321, 323, 330, 533 and six to eight hours from the following:
BIO 300, 322, 420, 421, 461, 501, 504, 521, 522, 528, 534, 597. Six hours must be upper-level (300 and greater) courses.

Pre-Pharmacy Curriculum
Required Courses .. 58 hrs
BIO 221 Zoology: Animal Form and Function
BIO 227 Human Anatomy
BIO 228 Human Anatomy Laboratory
BIO 300 Introductory Microbiology
CHE 201 General College Chemistry
CHE 202 General Chemistry and Qualitative Analysis
CHE 323 Organic Chemistry I
CHE 324 Organic Chemistry II
CHE 325 Organic Chemistry II Laboratory
ECO 231 Principles of Microeconomics
ENG 105 Reading, Writing and Inquiry
ENG 204 Advanced Expository Writing
MAT 250 Calculus and Analytic Geometry I
PHY 130 General Physics I
PHY 131 General Physics I Laboratory
PHY 132 General Physics II
PHY 133 General Physics II Laboratory
STA 135 Introduction to Probability and Statistics
Elective hours:
Cross-cultural (3) General electives (4) Humanities (6)
Social and Self-Awareness and Responsible Citizenship (3)

Total Curriculum Requirements .. 74 hrs
*The above program is based on the current admission requirements of the College of Pharmacy, University of Kentucky. Other colleges of pharmacy will have somewhat different requirements from those listed above. The curriculum can be modified to meet the requirements of most professional programs. Pre-pharmacy students desiring a four year program to receive the B.S. degree should follow the pre-medicine track and include all the courses listed above. The pre-pharmacy advisor should be consulted.
*May be used to fulfill University Studies requirements if completing a B.A. or B.S. degree.
*A course focusing on the study of a developing or non-Western country.
*Must be a two-course series.

Graduate Program
Graduate Coordinator - Michael Flinn

The Department of Biological Sciences offers the Master of Science degree. The M.S. program is designed to prepare the student to assume an active career in teaching and/or research or to pursue further graduate studies.

Requirements for Admission
Applicants must meet the Murray State University requirements (see Graduate Admissions). A faculty member must agree to mentor the student. Additional requirements for unconditional and conditional admission are as follows.

Unconditional
Undergraduate courses in botany, zoology, ecology, and genetics. Eight undergraduate hours in chemistry. Composite GRE score of 300 (V+Q) or higher on current scale or 1,000 (V+Q) or higher on prior scale.

Conditional
Recommendation of the advisory committee.

Master of Science in Biology
CIP 26.0101

Within the guidelines, the individual’s program is developed by an advisory committee to ensure proficiency in the basic areas of zoology, botany, ecology and genetics. The thesis track is strongly recommended for anyone considering further research or graduate activities.

THESIS REQUIREMENTS
Total Course Requirements .. 30 hours
BIO 689 Introduction to Graduate Study
BIO 696 Understanding Scientific Communication
BIO 697 Seminar
BIO 698-699 Thesis
BIO 600-level and above courses (9-20 hrs)
Graduate advisor/committee approved courses in related fields (0-11 hrs)

Other Degree Requirements
• Proficiency in quantitative methods through MAT 665 or a graduate course in bioinformatics, such as BIO 657.
• A preliminary examination will be given in the student’s first semester to assess the student’s understanding of principles across the diverse disciplines of biology.
• Oral defense of thesis.

NON-THESIS REQUIREMENTS
Total Course Requirements .. 36 hours
BIO 689 Introduction to Graduate Study
BIO 696 Understanding Scientific Communication
BIO 697 Seminar
BIO 600-level and above courses (16-32 hrs)
Graduate advisor/committee approved courses in related fields (0-16 hrs)
Other Degree Requirements

Proficiency in quantitative methods through STA 665 or a graduate course in bioinformatics, such as BIO 657.

A preliminary examination will be given in the student’s first semester to assess the student’s understanding of principles across the diverse disciplines of biology.

Optional Degree Requirement

BIO 695 Biological Research (4) with prior approval of the research topic by the student’s graduate committee; results to be presented while enrolled in BIO 697. Research credits can be counted toward the 36-hour requirement.

Master of Science

Biology/Watershed Science Concentration CIP 26.0101

Total Course Requirements ... 30 hours
Required Courses ... 10 hours
BIO 642 Watershed Ecology (same as EES 642)
BIO 689 Introduction to Graduate Study
BIO 696 Understanding Scientific Communication
BIO 697 Seminar
BIO 698-699 Thesis

Restricted Electives .. 17 hours
Courses must be approved by the advisory committee and represent at least two disciplines, one of which must be BIO.
AGR 674 Agricultural Irrigation and Water Systems
BIO 625 Biogeography
BIO 630 Animal Ecology
BIO 631 Plant Ecology
BIO 632 Quantitative Ecology
BIO 646 Stream Ecology
BIO 661 Freshwater Invertebrates
BIO 663 Aquatic Entomology
BIO 668 Wetland Ecology
BIO 669 Biological Limnology
BIO 670 Limnological Analysis Laboratory
BIO 671 Ichthyology
BIO 672 Herpetology
BIO 678 Conservation Biology
BIO 682 Waterfowl Management
BIO 683 Fisheries Management
BIO 686 Limnology
BIO 687 Freshwater Biology
BIO 688 Reservoir Ecology
BIO 690 Disturbance Ecology
CET 655 Environmental Regulatory Affairs
CET 681 Pollution Assessment and Control
CET 685 Remediation Technology
CHE 613 Environmental Chemistry
CHE 617 Advanced Organic Chemistry
CHE 627 Chemical Separations
CHE 628 Mass Spectrometry
CHE 665 Biogeochemistry
EES 612 Remote Sensing
EES 621 Geographic Information Systems
EES 640 Advanced Remote Sensing
EES 641 Digital Image Processing Research
EES 662 Hydrogeology
EES 665 Physical/Chemical Limnology
EES 680 Advanced Geographic Information Systems

Other Degree Requirements

Successful completion of STA 665.

Written and oral comprehensive examinations as specified by the advisory committee in broad aspects of watershed science and area of concentration (usually taken in third semester of residence).
Defense of thesis.

Master of Arts in Education
Secondary Teacher Leader with Biology Concentration
CIP 13.1205

The Department of Biological Sciences provides instruction in support of the M.A.Ed. in Secondary Teacher Leader with a concentration in biology. Prospective students should contact the graduate coordinator in the College of Education and Human Services for details on advising and graduate program design.

Department of Chemistry

1201 Jesse D. Jones Hall
270-809-2584

Chair: Kevin Revell. Faculty: Allenbaugh, Clear, Cox, Fannin, Fawzy, Johnson, Loganathan, Miller, Revell, Subedi, Volp, Whittaker.

The Department of Chemistry is certified by the American Chemical Society’s Committee on Professional Training. The department offers an area in chemistry or a major with tracks in biochemistry, forensics, polymer and materials science, pre-medical, pre-dental, pre-pharmacy, or teacher certification.

The chemistry area program is designed for students planning careers in engineering, the chemical industry, or for those who plan to pursue graduate study following the baccalaureate degree. Upon completion of this program, graduates are certified as professional chemists. Alumni with the area are well prepared to succeed in nationally recognized Ph.D. programs in chemistry.

The chemistry major program is recommended for students planning careers in medicine, dentistry, veterinary medicine, pharmacy, secondary education, toxicology, or biochemistry.

The department offers a minor in chemistry as well as a Master of Science in Chemistry.

Murray State has nationally recognized chemistry student organizations, the Student Members of the American Chemical Society, the Forensic Science Student Association, and a national chemistry honor society-Gamma Sigma Epsilon.

The department is closely aligned with the Chemical Services Laboratory (CSL), the Watershed Studies Institute (WSI), and efforts to enhance environmental and biomedical sciences at Murray State University.

An excellent undergraduate research program is maintained that allows students to become involved in research projects during their first semester at MSU or later if they so desire. Students present posters or talks each semester at local and/or national meetings.

Students interested in chemistry, should contact the chair of the Department of Chemistry, Murray State University, 1201 Jesse D. Jones Hall, Murray, KY 42071-3300, Phone: (270) 809-2584 Fax: (270) 809-6474, or visit our website at www.murraystate.edu/chemistry.
MAJOR:
Chemistry
Bachelor of Science/Bachelor of Arts CIP 40.0501

University Studies Requirements 41-44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 MAT 250 Calculus and Analytic Geometry I
 PHY 130 General Physics I
 PHY 131 General Physics Laboratory
 PHY 132 General Physics II
 PHY 133 General Physics II Laboratory

Required Courses .. 35 hrs
 CHE 100T Transitions
 CHE 201 General College Chemistry
 CHE 202 General Chemistry and Qualitative Analysis
 CHE 305 Analytical Chemistry
 CHE 312 Organic Chemistry I
 CHE 320 Organic Chemistry II
 CHE 325 Organic Chemistry Laboratory
 CHE 400 Chemical Literature
 CHE 401 Ethics for the Chemist
 CHE 410 Physical Chemistry I
 CHE 420 Physical Chemistry II
 CHE 509 Advanced Inorganic Chemistry I
 CHE 510 Inorganic Chemistry Laboratory
 CHE 519 Instrumental Analysis
 CHE 530 Fundamentals of Biochemistry I
 CHE 576 Polymer Chemistry
 CSC 235 Programming in C++
 MAT 308 Calculus and Analytic Geometry II
 MAT 309 Calculus and Analytic Geometry III

Required Limited Electives 3 hrs
 CHE 488 Cooperative Education/Internship
 or
 CHE 495 Senior Research

Required Minor ... 21 hrs

Electives .. 17-20 hrs

Total Curriculum Requirements 120 hrs

1 Required for major if not taken as a University Studies elective.
2 CSC 232 or EGR 140 may be substituted.
3 At least one three-hour free elective must be chosen from outside Chemistry and may not be counted as a University Studies requirement.

MAJOR:
Chemistry/Secondary Certification (Grades 8-12) Track
Bachelor of Science/Bachelor of Arts CIP 40.0501

NOTE: Requirements for teacher certification are established by the Kentucky Education Professional Standards Board. Students are cautioned that requirements may change. For current information, students should check with an advisor in the Department of Adolescent, Career and Special Education.

University Studies Requirements 41-50 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 MAT 250 Calculus and Analytic Geometry
 PHY 130 General Physics I
 PHY 131 General Physics Laboratory
 PHY 132 General Physics II
 PHY 133 General Physics II Laboratory

Note: Certification requires a grade of B or better in one English composition course and a B or better in a University Studies math course, public speaking, and EDU 180 or equivalent course. Additional requirements for admission to teacher education and student teaching must be met. See advisor and/or Office of Teacher Education Services for details.
Academic Degrees and Programs
Bachelor of Science/Bachelor of Arts CIP 40.0501

University Studies Requirements ... 41-44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 MAT 250 Calculus and Analytic Geometry I
 PHY 130 General Physics I
 PHY 131 General Physics I Laboratory
 PHY 132 General Physics II
 PHY 133 General Physics II Laboratory

Required Courses ... 38 hrs
CHE 100T Transitions
CHE 201 General College Chemistry
CHE 202 General Chemistry and Qualitative Analysis
CHE 305 Analytical Chemistry
CHE 312 Organic Chemistry I
CHE 320 Organic Chemistry II
CHE 403 Basic Physical Chemistry

Required Minor ... 21 hrs

Total Curriculum Requirements ... 128-138 hrs

Required Limited Electives .. 3-4 hrs
Select from the following:
CHE 330 Basic Biochemistry
CHE 352 Basic Chemical Instrumentation
CHE 504 Fundamentals of Toxicology
CHE 513 Environmental Chemistry

Secondary Certification Courses .. 33 hrs
EDU 180 Exploring the Teaching Profession
EDU 280 Educating for Human Development
EDU 380 Inclusive Teaching of Diverse Learners
EDU 480 Effective Pedagogy
EDU 485 Professional Perspectives for Teaching
SEC 420 Practicum in Secondary Schools
SEC 421 Student Teaching in the Secondary School
SEC 422 Extended Practicum

Required Minor ... 21 hrs

Unrestricted Electives ... 17-20 hrs

Total Curriculum Requirements ... 120 hrs

Required Courses ... 44 hrs
CHE 100T Transitions
CHE 201 General College Chemistry
CHE 202 General Chemistry and Qualitative Analysis
CHE 305 Analytical Chemistry
CHE 312 Organic Chemistry I
CHE 320 Organic Chemistry II
CHE 352 Basic Chemical Instrumentation
CHE 403 Basic Physical Chemistry
CHE 530 Fundamentals of Biochemistry I
CSC 232 Programming in C++
ENG 204 Advanced Expository Writing
ENG 324 Technical Writing

Required Minor ... 21 hrs

MAJOR:
Chemistry/Biochemistry Track
Bachelor of Science/Bachelor of Arts CIP 40.0501

University Studies Requirements ... 41-44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 MAT 250 Calculus and Analytic Geometry I
 PHY 130 General Physics I
 PHY 131 General Physics I Laboratory
 PHY 132 General Physics II
 PHY 133 General Physics II Laboratory

Required Courses ... 44 hrs
CHE 100T Transitions
CHE 201 General College Chemistry
CHE 202 General Chemistry and Qualitative Analysis
CHE 305 Analytical Chemistry
CHE 312 Organic Chemistry I
CHE 320 Organic Chemistry II
CHE 352 Basic Chemical Instrumentation
CHE 403 Basic Physical Chemistry
CHE 530 Fundamentals of Biochemistry I
CHE 537 Experimental Biochemistry
CHE 540 Fundamentals of Biochemistry II
CSC 235 Programming in C++

Required Minor\(^2\) ... 21 hrs

Electives ... 11-14 hrs

Total Curriculum Requirements ... 120 hrs
\(^1\)Required for major if not taken as a University Studies elective.
\(^2\)CSC 232 or EGR 140 may be substituted.
\(^3\)Biology minor is strongly recommended.

MAJOR:

Chemistry/Forensics Track
Bachelor of Science/Bachelor of Arts
CIP 40.0501

University Studies Requirements ... 41-44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
MAT 250 Calculus and Analytic Geometry \(^1\)
PHY 130 General Physics I \(^1\)
PHY 131 General Physics I Laboratory \(^1\)
PHY 132 General Physics II \(^1\)
PHY 133 General Physics II Laboratory \(^1\)

Required Courses ... 34 hrs
CHE 100T Transitions
CHE 201 General College Chemistry
CHE 202 General Chemistry and Qualitative Analysis
CHE 305 Analytical Chemistry
CHE 312 Organic Chemistry I
CHE 320 Organic Chemistry II
CHE 325 Organic Chemistry II Laboratory
CHE 403 Basic Physical Chemistry I
CSC 235 Programming in C++

Required Limited Electives ... 10 hrs
ARC 335 Forensic Archaeology
CHE 330 Basic Biochemistry
CHE 352 Basic Chemical Instrumentation

Criminal Justice Minor\(^3\) .. 21 hrs
CRI 220, 333, and 346 are required selections.

Unrestricted Electives .. 11-14 hrs

Total Curriculum Requirements ... 120 hrs
\(^1\)Required for major if not taken as a University Studies elective.
\(^2\)CSC 232 or EGR 140 may be substituted.
\(^3\)A second major in Criminal Justice can substitute for the minor.

MAJOR:

Chemistry/Pre-Pharmacy Track\(^1\)
Bachelor of Science/Bachelor of Arts
CIP 40.0501

University Studies Requirements ... 41-44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
MAT 250 Calculus and Analytic Geometry \(^1\)
PHY 130 General Physics I \(^2\)
PHY 131 General Physics I Laboratory \(^2\)
PHY 132 General Physics II \(^2\)
PHY 133 General Physics II Laboratory \(^2\)

Required Courses ... 51 hrs
CHE 100T Transitions
CHE 201 General College Chemistry
CHE 202 General Chemistry and Qualitative Analysis
CHE 305 Analytical Chemistry
CHE 312 Organic Chemistry I
CHE 320 Organic Chemistry II
CHE 352 Basic Chemical Instrumentation
CHE 503 Industrial Chemistry
CHE 576 Polymer Chemistry
CSC 235 Programming in C++
EGR 240 Thermodynamics I
EGR 375 Materials Science
MAT 308 Calculus and Analytic Geometry II
PHY 370 Introduction to Modern Physics

Required Limited Electives ... 3 hrs
CHE 488 Cooperative Education/Internship
or
CHE 495 Senior Research

Required Minor\(^3\) ... 11-21 hrs

Unrestricted Electives .. 1-17 hrs

Total Curriculum Requirements ... 120 hrs
\(^1\)Required for major if not taken as a University Studies elective.
\(^2\)CSC 232 or EGR 140 may be substituted.
\(^3\)PHY 235, 236, 255, and 256 count toward a physics minor, with 11 additional hours remaining; otherwise, 21 hours are required to complete a minor.

MAJOR:

Chemistry/Polymer and Materials Science Track
Bachelor of Science/Bachelor of Arts
CIP 40.0501

University Studies Requirements ... 38-44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
MAT 250 Calculus and Analytic Geometry \(^1\)
PHY 235 Mechanics, Heat and Wave Motion \(^1\)
PHY 236 Mechanics, Heat and Wave Motion Laboratory \(^1\)
PHY 255 Electricity, Magnetism and Light \(^1\)
PHY 256 Electricity, Magnetism and Light Laboratory \(^1\)

Required Courses ... 51 hrs
CHE 100T Transitions
CHE 201 General College Chemistry
CHE 202 General Chemistry and Qualitative Analysis
CHE 305 Analytical Chemistry
CHE 312 Organic Chemistry I
CHE 320 Organic Chemistry II
CHE 352 Basic Chemical Instrumentation
CHE 503 Industrial Chemistry
CHE 576 Polymer Chemistry
CSC 235 Programming in C++
EGR 240 Thermodynamics I
EGR 375 Materials Science
MAT 308 Calculus and Analytic Geometry II
PHY 370 Introduction to Modern Physics

Required Limited Electives ... 3 hrs
CHE 488 Cooperative Education/Internship
or
CHE 495 Senior Research

Required Minor\(^3\) ... 11-21 hrs

Unrestricted Electives .. 1-17 hrs

Total Curriculum Requirements ... 120 hrs
\(^1\)Required for major if not taken as a University Studies elective.
\(^3\)PHY 235, 236, 255, and 256 count toward a physics minor, with 11 additional hours remaining; otherwise, 21 hours are required to complete a minor.

MAJOR:

Chemistry/Pre-Pharmacy Track\(^1\)
Bachelor of Science/Bachelor of Arts
CIP 40.0501

University Studies Requirements ... 41-44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
MAT 250 Calculus and Analytic Geometry \(^1\)
PHY 130 General Physics I \(^2\)
PHY 131 General Physics I Laboratory \(^2\)
PHY 132 General Physics II \(^2\)
PHY 133 General Physics II Laboratory \(^2\)

Required Courses ... 51 hrs
CHE 100T Transitions
CHE 201 General College Chemistry
CHE 202 General Chemistry and Qualitative Analysis
CHE 305 Analytical Chemistry
CHE 312 Organic Chemistry I
CHE 320 Organic Chemistry II
CHE 352 Basic Chemical Instrumentation
CHE 503 Industrial Chemistry
CHE 576 Polymer Chemistry
CSC 235 Programming in C++
EGR 240 Thermodynamics I
EGR 375 Materials Science
MAT 308 Calculus and Analytic Geometry II
PHY 370 Introduction to Modern Physics

Required Limited Electives ... 3 hrs
CHE 488 Cooperative Education/Internship
or
CHE 495 Senior Research

Required Minor\(^3\) ... 11-21 hrs

Unrestricted Electives .. 1-17 hrs

Total Curriculum Requirements ... 120 hrs
\(^1\)Required for major if not taken as a University Studies elective.
\(^3\)CSC 232 or EGR 140 may be substituted.
\(^2\)PHY 235, 236, 255, and 256 count toward a physics minor, with 11 additional hours remaining; otherwise, 21 hours are required to complete a minor.

MAJOR:

Chemistry/Pre-Pharmacy Track\(^1\)
Bachelor of Science/Bachelor of Arts
CIP 40.0501

University Studies Requirements ... 41-44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
MAT 250 Calculus and Analytic Geometry \(^1\)
PHY 130 General Physics I \(^2\)
PHY 131 General Physics I Laboratory \(^2\)
PHY 132 General Physics II \(^2\)
PHY 133 General Physics II Laboratory \(^2\)

Required Courses ... 51 hrs
CHE 100T Transitions
CHE 201 General College Chemistry
CHE 202 General Chemistry and Qualitative Analysis
CHE 305 Analytical Chemistry
CHE 312 Organic Chemistry I
CHE 320 Organic Chemistry II
CHE 352 Basic Chemical Instrumentation
CHE 503 Industrial Chemistry
CHE 576 Polymer Chemistry
CSC 235 Programming in C++
EGR 240 Thermodynamics I
EGR 375 Materials Science
MAT 308 Calculus and Analytic Geometry II
PHY 370 Introduction to Modern Physics

Required Limited Electives ... 3 hrs
CHE 488 Cooperative Education/Internship
or
CHE 495 Senior Research

Required Minor\(^3\) ... 11-21 hrs

Unrestricted Electives .. 1-17 hrs

Total Curriculum Requirements ... 120 hrs
\(^1\)Required for major if not taken as a University Studies elective.
\(^3\)CSC 232 or EGR 140 may be substituted.
\(^2\)PHY 235, 236, 255, and 256 count toward a physics minor, with 11 additional hours remaining; otherwise, 21 hours are required to complete a minor.
Required Courses .. 46 hrs
CHE 100T Transitions
CHE 201 General College Chemistry
CHE 202 General Chemistry and Qualitative Analysis
CHE 305 Analytical Chemistry
CHE 312 Organic Chemistry I
CHE 320 Organic Chemistry II
CHE 325 Organic Chemistry II Laboratory
CHE 330 Basic Biochemistry
CHE 352 Basic Chemical Instrumentation
CHE 403 Basic Physical Chemistry I
CSC 235 Programming in C++
STA 135 Introduction to Probability and Statistics

Total Curriculum Requirements 120 hrs

Unconditional
To qualify for unconditional admission, an applicant must have:
1. an undergraduate degree in chemistry;
2. an overall undergraduate GPA of 3.0/4.0 or higher;
3. minimum GRE scores of: 140 verbal, 150 quantitative, 2.5 analytical writing;
4. for international students, minimum scores of: TOEFL 527, iBT TOEFL 71, with no band less than 16, or IELTS 6.0 with no band less than 5.0.

Conditional
In exceptional cases (such as extensive work or research experience), students falling slightly below one of the unconditional admission benchmarks may still be considered for conditional admission. Applicants with TOEFL scores between 500 and 526 may be admitted on a conditional basis, but their proficiency in English will be further evaluated upon their arrival on campus, and they may be required to undertake additional study of English prior to beginning graduate work in chemistry.

Research and Other Requirements
CHE 698-699 Thesis Research
600-level courses (13 hrs)
(Up to six hours may be selected from courses other than CHE.)
Each student is required to prepare and present one seminar based on a thorough search of the chemical literature and one based on the student's thesis research.

Other Degree Requirements
Successful completion of an advanced instrumental analysis course (CHE 619 or equivalent).
Submission and defense of a satisfactory thesis.

Total Course Requirements 30 hours
CHE 601 Seminar1
CHE 602 Seminar1
CHE 609 Advanced Inorganic Chemistry I
CHE 617 Advanced Organic Chemistry
CHE 681 Advanced Physical Chemistry

NON-THESIS REQUIREMENTS
Total Course Requirements 36 hours

CHE 601 Seminar2
CHE 602 Seminar2
CHE 609 Advanced Inorganic Chemistry I
CHE 617 Advanced Organic Chemistry
CHE 681 Advanced Physical Chemistry
600-level courses (22 hrs)
(Up to nine hours may be selected from courses other than CHE.)
Each student is required to prepare and present two seminars based on a thorough search of the chemical literature.

Other Degree Requirements
Successful completion of an advanced instrumental analysis course (CHE 619 or equivalent).
CHE 600-level electives to total 36 hours.

Graduate Programs
Graduate Coordinator - Rachel Allenbaugh

Master of Science Chemistry CIP 40.0501

Requirements for Admission
Applicants must meet the Murray State University requirements (see Graduate Admissions). Additional information regarding unconditional and conditional admission is given below.

Unconditional
To qualify for unconditional admission, an applicant must have:
1. an undergraduate degree in chemistry;
2. an overall undergraduate GPA of 3.0/4.0 or higher;
3. minimum GRE scores of: 140 verbal, 150 quantitative, 2.5 analytical writing;
4. for international students, minimum scores of: TOEFL 527, iBT TOEFL 71, with no band less than 16, or IELTS 6.0 with no band less than 5.0.

Conditional
In exceptional cases (such as extensive work or research experience), students falling slightly below one of the unconditional admission benchmarks may still be considered for conditional admission. Applicants with TOEFL scores between 500 and 526 may be admitted on a conditional basis, but their proficiency in English will be further evaluated upon their arrival on campus, and they may be required to undertake additional study of English prior to beginning graduate work in chemistry.

Research and Other Requirements
CHE 698-699 Thesis Research
600-level courses (13 hrs)
(Up to six hours may be selected from courses other than CHE.)
Each student is required to prepare and present one seminar based on a thorough search of the chemical literature and one based on the student's thesis research.

Other Degree Requirements
Successful completion of an advanced instrumental analysis course (CHE 619 or equivalent).
Submission and defense of a satisfactory thesis.

Total Course Requirements 30 hours
CHE 601 Seminar1
CHE 602 Seminar1
CHE 609 Advanced Inorganic Chemistry I
CHE 617 Advanced Organic Chemistry
CHE 681 Advanced Physical Chemistry

NON-THESIS REQUIREMENTS
Total Course Requirements 36 hours

CHE 601 Seminar2
CHE 602 Seminar2
CHE 609 Advanced Inorganic Chemistry I
CHE 617 Advanced Organic Chemistry
CHE 681 Advanced Physical Chemistry
600-level courses (22 hrs)
(Up to nine hours may be selected from courses other than CHE.)
Each student is required to prepare and present two seminars based on a thorough search of the chemical literature.

Other Degree Requirements
Successful completion of an advanced instrumental analysis course (CHE 619 or equivalent).
CHE 600-level electives to total 36 hours.

Master of Arts in Education Secondary Teacher Leader with Chemistry Concentration CIP 13.1205

The Department of Chemistry provides instruction in support of the M.A.Ed. in Secondary Teacher Leader with a concentration in chemistry. Prospective students should contact the graduate coordinator in the College of Education and Human Services for details on advising and graduate program design.

Department of Earth and Environmental Sciences
334 Blackburn Science Building
270-809-2591

Chair: Robin Zhang. Faculty: Benson, Busby, Casey, Cetin, El Masri, Hong, Ortmann, Stinchcomb, Venter, Zhang.

An area in earth and environmental sciences with tracks in, archaeology, environmental science, environmental science, geography and geographic information science (GIS), geology, and earth science teacher certification are provided by the department faculty. Minors are offered in anthropology, archaeology, earth science, environmental geology, and geographic information science (GIS). A certificate in geographic information science (GIS) and an M.S. in Earth and Environmental Sciences may also be earned.
In addition to the more traditional curricula, students have access to the Murray State Archaeology Lab, a summer field archaeology school, and the Mapping Applications and Resource Center (MARC), a core entity in the Murray State University Watershed Studies Institute (WSI).

Earth and environmental sciences majors are encouraged to participate in internships and cooperative education experiences. Graduates have outstanding opportunities for employment as archaeologists, planners, cartographers, environmental geologists, remote sensing/GIS professionals, and other mapping science positions in business, government, and education.

AREA:
Earth and Environmental Sciences/Environmental Science Track
Bachelor of Science CIP 40.0601

University Studies Requirements ... 38-43 hrs
(See Academic Degrees and Programs.)

Required Courses ... 52 hrs
ARC 150 Introduction to Archaeology¹
ARC 320 Human Ecology
BIO 103 Saving Planet Earth
CHE 105 Introductory Chemistry
ECO 231 Principles of Microeconomics
EES 100T Transitions
EES 101 The Environment and the Environment²
EES 110 World Geography¹
EES 125 Weather and Climate²
EES 202 Introduction to Geographic Information Sciences
EES 210 Hydrology
EES 301 Understanding Scientific Communication
EES 312 Introduction to Remote Sensing
EES 336 Principles of Geomorphology
EES 350 Field Techniques in Geosciences
EES 424 Conservation and Environmental Geosciences

Required Limited Electives ... 6 hrs
Choose from the following approved electives:
BIO 101 Biological Concepts
CHE 210 Brief Organic Chemistry
ECO 345 Environmental Economics
EES 200 Introduction to Oceanography
EES 303 Introduction to Water Science
EES 305 Introduction to Cartography
EES 314 Sediments and Soils
EES 426 Applied Meteorology
EES 489 Cooperative Education/Internship
EES 507 Land Use Planning
EES 536 Soils and Geomorphology
EES 542 Watershed Ecology
EES 562 Hydrogeology
EES 565 Biogeochecmy
EES 578 Terrestrial Ecosystem Modeling
EES 579 Remote Sensing of Vegetation
EES 591 Special Problems
EES 592 Special Problems
EES 593 Special Problems
ENG 371 Literature and the Environment
ENT 286 Introduction to Environmental Engineering Technology
PHI 376 Environmental Ethics

Collateral Requirement ... 7-8 hrs
CSC 101 Introduction to Problem Solving Using Computers
or
CSC 199 Introduction to Information Technology
MAT 150 Algebra and Trigonometry (or above)
or
STA 135 Introduction to Probability and Statistics (or above)

Unrestricted Electives ... 11-17 hrs

Total Curriculum Requirements ... 120 hrs

¹Will count towards University Studies Global Awareness, Cultural Diversity, and the World’s Artistic Tradition requirements.
²Will count towards University Studies Scientific Inquiry, Methodologies, and Quantitative Skills requirements.
³This is a University Studies electives writing-intensive or technology-intensive course.

AREA:
Earth and Environmental Sciences/Earth Science
Secondary Certification Track (Grades 8-12)
Bachelor of Science CIP 40.0601

University Studies Requirements ... 44 hrs
(See Academic Degrees and Programs.)

University Studies selection must include:
•Scientific Inquiry, Methodologies, and Quantitative Skills
EES 101 The Environment and the Environment
EES 102 Earth through Time
MAT 150 Algebra and Trigonometry

•Global Awareness, Cultural Diversity and the World’s Artistic Traditions
EES 110 World Geography

•University Studies Electives
ARC 150 Introduction to Archaeology
CSC 101 Introduction to Problem Solving Using Computers

Note: Certification requires a grade of B or better in a University Studies course, and public speaking. Additional requirements for admission to teacher education and student teaching must be met. See advisor and/or Office of Teacher Education Services for details.

Required Courses ... 33 hrs
ARC 320 Human Ecology
AST 115 Introductory Astronomy
AST 116 Introductory Astronomy Laboratory
EES 100T Transitions
EES 125 Weather and Climate²
EES 202 Introduction to Geographic Information Sciences
EES 301 Understanding Scientific Communication
EES 303 Introduction to Water Science
EES 312 Introduction to Remote Sensing
EES 336 Principles of Geomorphology
EES 339 Field Geology
or
EES 350 Field Techniques in Geosciences

Required Limited Electives ... 12 hrs
Select upper-level courses from the list of approved electives shown under the Geology Track.

Note: The National Science Teachers Association (NSTA) recommends a minimum of one course from each of the following three areas, with total of recommended supplemental science hours to include no fewer than 16 semester hours.

A. Biology
- BIO 101 Biological Concepts
- BIO 112 Field Biology
- BIO 221 Zoology: Animal Form and Function
- BIO 222 Botany: Plant Form and Function

B. Chemistry
- CHE 101 Consumer Chemistry
- CHE 105 Introductory Chemistry
- CHE 201 General College Chemistry
- CHE 202 General Chemistry and Qualitative Analysis

C. Physics
- PHY 235 Mechanics, Heat and Wave Motion
- PHY 236 Mechanics, Heat and Wave Motion Laboratory
- PHY 255 Electricity, Magnetism and Light
- PHY 256 Electricity, Magnetism and Light Laboratory

Required for Secondary Certification .. 31 hrs
- EDU 180 Exploring the Teaching Profession
- EDU 280 Educating for Human Development
- EDU 380 Inclusive Teaching of Diverse Learners
- EDU 480 Effective Pedagogy
- EDU 485 Professional Perspectives for Teaching
- SEC 420 Practicum in Secondary Schools
- SEC 421 Student Teaching in the Secondary School
- SEC 422 Extended Practicum

Total Curriculum Requirements .. 120 hrs

1. With a grade of 8 or better.
2. Must be taken together and two semesters before student teaching.
3. Must be taken one semester before student teaching.

Earth Science Teaching Specialization
The teaching specialization in earth science is a path to secondary certification in earth science designed to accompany certification in another science content area (biology/chemistry/physics). All College of Education and Human Services secondary certification course requirements must be met. Note: Even though this program exceeds Murray State University’s requirements for an earth science minor, in order for an earth science minor to appear on a transcript, a minor must be declared, and all residential and graduation requirements must be met.

Requirements for teacher certification are established by the Kentucky Education Professional Standards Board. Students are cautioned that changes in these requirements may occur. Therefore, for the most current information, students should check with an advisor in the College of Education and Human Services.

Earth Science Teaching Specialization 30 hrs
- AST 115 Introductory Astronomy
- AST 116 Introductory Astronomy Laboratory
- EES 101 The Earth and the Environment
- EES 102 Earth through Time
- EES 125 Weather and Climate
- EES 202 Introduction to Geographic Information Sciences
- EES 303 Introduction to Water Science
- EES 336 Principles of Geomorphology
- EES 339 Field Geology
- EES 350 Field Techniques in Geosciences

AREA:

Earth and Environmental Sciences/Geology Track
Bachelor of Science CIP 40.0601

University Studies Requirements 38-43 hrs
(See Academic Degrees and Programs.)

Required Courses .. 50 hrs
- ARC 150 Introduction to Archaeology
- ARC 300 Archaeology Method and Theory
- ARC 302 Archaeological Field Work I
- ARC 304 Archaeology Laboratory Methods
- ARC 390 Geoarchaeology
- BIO 101 Biological Concepts
- CET 280 Plane Surveying
- CHE 105 Introductory Chemistry
- CHE 101 Consumer Chemistry
- CHE 201 General College Chemistry
- CHE 202 General Chemistry and Qualitative Analysis
- CHE 201 General College Chemistry
- CHE 202 General Chemistry and Qualitative Analysis

Required Limited Electives .. 8 hrs
Choose from the following approved electives:
- ARC 300 Archaeology Method and Theory
- ARC 302 Archaeological Field Work I
- ARC 304 Archaeology Laboratory Methods
- ARC 390 Geoarchaeology
- BIO 101 Biological Concepts
- CHE 105 Introductory Chemistry
- CHE 101 Consumer Chemistry
- CHE 201 General College Chemistry
- CHE 202 General Chemistry and Qualitative Analysis
- CHE 201 General College Chemistry
- CHE 202 General Chemistry and Qualitative Analysis
- CHE 201 General College Chemistry
- CHE 202 General Chemistry and Qualitative Analysis
- CHE 201 General College Chemistry
- CHE 202 General Chemistry and Qualitative Analysis

Collateral Requirement ... 7-8 hrs
- CSC 101 Introduction to Problem Solving Using Computers
- CSC 199 Introduction to Information Technology

- EES 350 Field Techniques in Geosciences
- EES 336 Principles of Geomorphology
- EES 339 Field Geology
- EES 350 Field Techniques in Geosciences
MAT 150\(^2\) Algebra and Trigonometry (or above)
or
STA 135\(^2\) Introduction to Probability and Statistics (or above)

Unrestricted Electives ... 11-17 hrs

Total Curriculum Requirements 120 hrs
\(^1\)Will count towards University Studies Global Awareness, Cultural Diversity, and the World’s Artistic Tradition requirements.
\(^2\)Will count towards University Studies Scientific Inquiry, Methodologies, and Quantitative Skills requirements.
\(^3\)This is a University Studies electives writing-intensive or technology-intensive course.

AREA:
Earth and Environmental Sciences/
Archaeology Track
Bachelor of Science CIP 40.0601

University Studies Requirements 38-43 hrs
(See Academic Degrees and Programs.)

University Studies selection must include:
• Global Awareness, Cultural Diversity, and the World’s Artistic Traditions

Required Courses .. 44 hrs
ARC 150 Introduction to Archaeology\(^2\)
ARC 300 Archaeological Method and Theory
ARC 304 Archaeological Laboratory Methods
ARC 320 Human Ecology
ARC 330 North American Archaeology
ARC 390 Geoarchaeology
EES 100T Transitions
EES 101 The Earth and the Environment\(^2\)
EES 110 World Geography\(^1\)
EES 202 Introduction to Geographic Information Sciences
EES 301 Understanding Scientific Communication
EES 312 Introduction to Remote Sensing
EES 336 Principles of Geomorphology

Five credit hours chosen from the following:
ARC 302 Archaeological Field Work I
ARC 402 Archaeological Field Work II
ARC 510 Advanced Archaeological Field Work

Required Limited Electives 14 hrs
Choose from the following approved electives:
ANT 311 Anthropology of Complex Societies
ANT 325 Biological Anthropology
ANT 329 North American Indians
ARC 314 Sediments and Soils
ARC 315 Special Topics in Archaeology
ARC 321 Ancient Civilizations
ARC 335 Forensic Archaeology
ARC 340 Archaeology of Africa
ARC 345 Archaeology of Ancient Mexico, Central America, and the Caribbean
ARC 350 Public Archaeology
ARC 355 Pottery and People
ARC 357 Lithic Analyses
ARC 360 Historical Archaeology
ARC 370 Archaeology of the Eastern Woodlands
ARC 385 Archaeology of Eastern Asia

ARC 389 Archaeology and Political Ecology of Empires
ARC 395 Archaeology of Religion
ARC 402 Archaeological Field Work II
ARC 425 Advanced Archaeological Laboratory Methods
ARC 488 Cooperative Education/Internship
ARC 489 Cooperative Education/Internship
ARC 500 Directed Studies
ARC 510 Advanced Archaeological Field Work
ARC 556 Geophysical Surveying
CET 280 Plane Surveying
EES 305 Introduction to Cartography
EES 306 Landscapes of the National Parks
EES 310 Rock and Mineral Resources
EES 350 Field Techniques in Geosciences
EES 388 International Experience in the Geosciences
EES 521 Geographic Information Systems

Collateral Requirement ... 7-8 hrs
CSC 101\(^3\) Introduction to Problem Solving Using Computers
or
CSC 199\(^3\) Introduction to Information Technology
MAT 150\(^2\) Algebra and Trigonometry (or above)
or
STA 135\(^2\) Introduction to Probability and Statistics (or above)

Unrestricted Electives ... 11-17 hrs

Total Curriculum Requirements 120 hrs
\(^1\)Will count towards University Studies Global Awareness, Cultural Diversity, and the World’s Artistic Tradition requirements.
\(^2\)Will count towards University Studies Scientific Inquiry, Methodologies, and Quantitative Skills requirements.
\(^3\)This is a University Studies electives writing-intensive or technology-intensive course.

AREA:
Earth and Environmental Sciences/Geography and
GIS Track
Bachelor of Science CIP 40.0601

University Studies Requirements 38-43 hrs
(See Academic Degrees and Programs.)

Required Courses .. 47 hrs
ARC 150 Introduction to Archaeology\(^1\)
ARC 320 Human Ecology
EES 100T Transitions
EES 101 The Earth and the Environment\(^2\)
EES 110 World Geography\(^1\)
EES 125 Weather and Climate\(^2\)
EES 202 Introduction to Geographic Information Sciences
EES 301 Understanding Scientific Communication
EES 305 Introduction to Cartography
EES 312 Introduction to Remote Sensing
EES 330 Economic Geography
EES 336 Principles of Geomorphology
EES 512 Remote Sensing
EES 521 Geographic Information Systems

Required Limited Electives 11 hrs
Choose from the following approved electives:
EES 210 Hydrology
EES 303 Introduction to Water Science
EES 306 Landscapes of the National Parks
EES 310 Rock and Mineral Resources
EES 314 Sediments and Soils
EES 350 Field Techniques in Geosciences
EES 390 Geoarchaeology
EES 424 Conservation and Environmental Geosciences
EES 488 Cooperative Education/Internship
EES 489 Cooperative Education/Internship
EES 507 Land Use Planning
EES 522 Advanced Cartography
EES 562 Hydrogeology
EES 578 Terrestrial Ecosystem Modeling
EES 579 Remote Sensing of Vegetation
EES 591 Special Problems
EES 592 Special Problems
EES 593 Special Problems

Collateral Requirement .. 7-8 hrs
CSC 101 Introduction to Problem Solving Using Computers
or
CSC 199 Introduction to Information Technology
MAT 150 Algebra and Trigonometry (or above)
or
STA 135 Introduction to Probability and Statistics (or above)

Unrestricted Electives .. 11-17 hrs

Total Curriculum Requirements 120 hrs
1. Will count towards University Studies Global Awareness, Cultural Diversity, and the World’s Artistic Tradition requirements.
2. Will count towards University Studies Scientific Inquiry, Methodologies, and Quantitative Skills requirements.
3. This is a University Studies electives writing-intensive or technology-intensive course.

Anthropology Minor ... 21 hrs
ANT 140, ANT 325, ARC 150, plus 12 hours of ANT 300-level or above electives. Electives may include ARC 321, 325, 330, 335, 340, 385, 389, and 395. Electives may substitute up to six hours selected from the following as approved by advisor: HIS 309, 354, 370, 451, SOC 300, 325, 337, 465. Six hours must be upper-level courses.

Archaeology Minor ... 21 hrs
ARC 150, 300, 302, 304, 350, plus six hours of ARC electives 300-level or above. Six hours must be upper-level courses.

Earth Science Minor ... 21 hrs
EES 101, 102, 125, and 339 or 350. Six additional hours selected from the following: AST 115, 116; EES 202, 210, 303, 310, 312, 336, 591, 592, 593. Six hours must be upper-level courses.

Environmental Geology Minor .. 21 hrs
EES 101, 102, 202, and three additional geology courses chosen with the advice and consent of the chair of the Department of Earth and Environmental Sciences. Six hours must be upper-level courses.

Geographic Information Science Minor 21 hrs
EES 110, 125, 202, 305, and seven hours of electives selected from the following: EES 312, 350, 507, 512, 521, 522, 591, 592, 593. Six hours must be upper-level courses.

Social Science Minor ... 24 hrs
Open only to majors in earth and environmental sciences, economics, history, or political science who seek secondary certification in social studies. ECO 231, EES 110, HIS 221, POL 140, SOC 133; and six hours of upper level courses (300 or above) from the social science disciplines with approval of advisor. Courses required for a major may not be counted toward the minor; substitutions must be from a social science discipline other than the major and be approved by the advisor; and requirements for certification for teaching second-
ary school social studies, grades 8 through 12 through the College of Education and Human Services must also be met. Six hours must be upper-level courses.

CERTIFICATE:
Geographic Information Science

The certificate in GIScience program is designed to provide students fundamental knowledge of geographic information science necessary for today's diverse array of fields and disciplines. The certification program will provide students experience in data collection, data management methods and techniques, data visualization, data analysis and interpretation, and the principles and techniques remote sensing. Students will gain experience using industry standard hardware and software to develop a variety of projects and explore GIScience applications.

Total Course Requirements ... 15 hrs
1. One elective course from the following:
 AGR 471 Applications in Precision Agriculture
 BIO 240 Biological Applications in GIS
 CIS 307 Decision Support Technologies
 CIS 317 Principles of Information Systems Analysis and Design
 CSC 145 Introduction to Programming
 CSC 232 Visual Basic Programming
 CSC 310 Data Administration
 CSC 345 Data Structures
 EES 305 Introduction to Cartography
 EES 507 Land Use Planning
 EES 522 Advanced Cartography
 EES 570 Computer Applications in Geosciences
 MKT 585 Integrated Business GIS

 1. A grade of C or better must be earned in all courses.

Graduate Program

Graduate Coordinator - Haluk Cetin

The Department of Earth and Environmental Sciences offers a Master of Science degree in Earth and Environmental Sciences. Students choose the thesis or the non-thesis option. Four concentrations are offered for the thesis option: environmental geology, geoarchaeology, geoinformatics, and watershed science. Each student's program is developed in consultation with the graduate coordinator.

The Environmental Geology Concentration is an interdisciplinary master's program within the Jones College of Science, Engineering and Technology designed to prepare students for further graduate studies or careers in either the public or private sector. This concentration focuses on the chemical, physical, and biological aspects of environmental change both in the present and in the geologic past.

The Archaeology Concentration is an interdisciplinary master's degree program designed to prepare students for further graduate studies or careers in the public or private sector. The archaeology concentration offers students a broad range of options to develop a curriculum that matches their particular interests and needs. The archaeology concentration emphasizes the relationship between human culture and the natural environment and provides opportunities to apply the principles and methods of archaeology to reconstruct the past to better understand our cultural heritage.
The Geoinformatics Concentration is designed to prepare students for further graduate studies or careers in the field of geospatial information science and technology. Geospatial technology is a fast growing field with broad and multidisciplinary applications that has penetrated every aspect of our daily lives. The Geoinformatics Concentration provides students with up-to-date training on geospatial theory, application, and technology.

The Watershed Science Concentration is jointly sponsored between the Department of Earth and Environmental Sciences and the Watershed Studies Institute (WSI). The Watershed Studies Institute program in Watershed Science is an interdisciplinary master’s program within the Jones College of Science, Engineering and Technology designed to prepare students for careers or for further graduate studies in the broader aspects of watershed management and science. The student’s program is developed in consultation with the graduate coordinator. Visit the Watershed Studies Institute site to learn more.

Earth and Environmental Sciences is closely associated with the Mapping Applications and Resources Center (MARC) where hardware and software related to remote sensing and geographic information science are located. Students also have the opportunity to conduct research through activities of the department’s Archaeology Laboratory.

Requirements for Admission
Applicants must meet the Murray State University requirements (see Graduate Admissions). The department requires that three letters of recommendation and GRE scores accompany application materials. A letter discussing reasons for the applicant’s interest in the program should also be forwarded. Additional requirements for unconditional and conditional admission are as follows.

Unconditional
To qualify for unconditional admission, an applicant must have an overall grade point average of 3.0 (on a 4.0 scale) in an earth and environmental sciences (or related) field and a composite GRE score (V+Q) of 1,000 old scale or 300 new scale.

Conditional
Students admitted conditionally are admitted to full standing after completing (1) any remedial courses required by the graduate faculty and (2) one semester of graduate work with an overall grade point average of 3.0 or above.

Master of Science Earth and Environmental Sciences
CIP 40.0699

NON-THESIS REQUIREMENTS
Total Course Requirements.. 30 hours
EES 612 Remote Sensing
EES 619 Seminar in Research Techniques
EES 621 Geographic Information Systems
EES 680 Advanced Geographic Information Systems
EES 696 Understanding Scientific Communication

Electives ... 14 hours
EES courses, at 600-level (9-10 hrs)
EES or related courses at 600-level (4-5)

Other Degree Requirements
Written and oral comprehensive examinations.

Master of Science Earth and Environmental Sciences/Environmental Geology Concentration
CIP 40.0699

Total Course Requirements.. 30 hours
EES 619 Seminar in Research Techniques
EES 621 Geographic Information Systems
EES 696 Understanding Scientific Communication
EES 698 Thesis Research
EES 699 Thesis Research

Environmental Geology Restricted Electives 15 hours
Choose any two courses of the following (6-7 hours):
BIO 686 Limnology
CHE 665 Biogeochemistry
EES 616 Isotope Geochemistry
EES 633 Paleoeology
EES 642 Watershed Ecology
EES 680 Advanced Geographic Information Systems

Eight to nine hours from the following:
ARC 615 Environmental Archaeology
BIO 623 Physiological Ecology
BIO 625 Biogeography
BIO 632 Quantitative Ecology
BIO 646 Stream Ecology
BIO 678 Conservation Biology
BIO 690 Disturbance Ecology
CET 655 Environmental Regulatory Affairs
CET 681 Pollution Assessment and Control
CHE 613 Environmental Chemistry
EES 636 Soils and Geomorphology
EES 662 Hydrogeology
EES 665 Physical/Chemical Limnology
EES 691 Special Problems
EES 692 Special Problems
EES 693 Special Problems
MAT 665 Applied Statistics I
WSC 601 Seminar in Sustainability Studies

Other Degree Requirements
Defense of thesis.

Master of Science Earth and Environmental Sciences/Archaeology Concentration
CIP 40.0699

Total Course Requirements.. 30 hours
ARC 600 Graduate Seminar in Archaeology
EES 619 Seminar in Research Techniques
EES 621 Geographic Information Systems
EES 696 Understanding Scientific Communication
EES 698 Thesis Research
EES 699 Thesis Research

Geoarchaeology Restricted Electives 12 hours
Choose one course from the following:
ARC 602 Graduate Archaeological Field Work
EES 636 Soils and Geomorphology
EES 656 Geophysical Surveying

Choose nine hours from the following:
ARC 604 Archaeological Laboratory Systems
ARC 605 Archaeological Information Systems
ARC 610 Landscape Archaeology
ARC 615 Environmental Archaeology
ARC 620 Human Ecology
EES 612 Remote Sensing
EES 680 Advanced Geographic Information Systems
EES 691 Special Problems
EES 692 Special Problems
EES 693 Special Problems
MAT 665 Applied Statistics I
WSC 601 Seminar in Sustainability Studies

Other Degree Requirements
Defense of thesis.

Master of Science Earth and Environmental Sciences/Geoinformatics Concentration
CIP 40.0699

Total Course Requirements .. 30 hours
EES 619 Seminar in Research TechniquesTT
EES 621 Geographic Information Systems
EES 696 Understanding Scientific Communication
EES 698 Thesis ResearchH
EES 699 Thesis ResearchH

Required Concentration Courses ... 10 hours
EES 612 Remote Sensing
EES 640 Advanced Remote Sensing
EES 680 Advanced Geographic Information Systems

Geoinformatics Restricted Electives 5 hours
Choose from the following:
CIS 609 Data Warehouses and Business Intelligence
CIS 615 Information System Security
EES 622 Advanced Cartography
EES 641 Digital Image Processing Research
EES 656 Geophysical Surveying
EES 660 Spatial Analysis Techniques
EES 661 Precision GIS/GPS Applications
EES 678 Terrestrial Ecosystem Modeling
EES 679 Remote Sensing of Vegetation
EES 691 Special Problems
EES 692 Special Problems
EES 693 Special Problems
MAT 665 Applied Statistics I

Other Degree Requirements
Defense of thesis.

Master of Science Earth and Environmental Sciences/Watershed Science Concentration
CIP 40.0699

Total Course Requirements ... 30 hours
EES 619 Seminar in Research TechniquesTT
EES 621 Geographic Information Systems
EES 642 Watershed Ecology
EES 696 Understanding Scientific Communication
EES 698 Thesis ResearchH
EES 699 Thesis ResearchH

Watershed Science Restricted Electives 12 hours
Courses must be approved by the advisory committee and represent at least two disciplines.
AGR 674 Agricultural Irrigation and Water Systems
BIO 625 Biogeography
BIO 630 Animal Ecology
BIO 631 Plant Ecology
BIO 632 Quantitative Ecology
BIO 646 Stream Ecology
BIO 661 Freshwater Invertebrates
BIO 663 Aquatic Entomology
BIO 668 Wetland Ecology
BIO 669 Biological Limnology
BIO 670 Limnological Analysis Laboratory
BIO 671 Ichthyology
BIO 672 Herpetology
BIO 678 Conservation Biology
BIO 682 Waterfowl Management
BIO 683 Fisheries Management
BIO 686 Limnology
BIO 687 Freshwater Biology
BIO 688 Reservoir Ecology
BIO 690 Disturbance Ecology
CET 655 Environmental Regulatory Affairs
CET 681 Pollution Assessment and Control
CET 685 Remediation Technology
CHE 613 Environmental Chemistry
CHE 617 Advanced Organic Chemistry
CHE 627 Chemical Separations
CHE 628 Mass Spectrometry
CHE 665 Biogeography
CHE 666 Isotope Geochemistry
CHE 668 Wetland Ecology
CHE 669 Biological Limnology
CHE 671 Terrestrial Ecosystem Modeling
CHE 678 Terrestrial Ecosystem Modeling
CHE 679 Remote Sensing of Vegetation
CHE 680 Advanced Geographic Information Systems

Other Degree Requirements
Successful completion of MAT 665 Applied Statistics I if substituted for EES 619.
Written and oral comprehensive examinations as specified by the advisory committee in broad aspects of watershed science and area of concentration (usually taken in third semester of residence).
Defense of thesis.

CERTIFICATE:
Geospatial Data Science
CIP 45.0702

The Certificate in Geospatial Data Science (cGDS) program is designed to complement interdisciplinary graduate and professional degree programs in data science and to provide specialized set of courses emphasizing geospatial science and technology for students to gain professional skills and/or knowledge. The certification program will support professionals working in geospatial field and will provide experience using industry and federal data standards and methodologies for data acquisition/input, manipulation, analysis, modeling and output. It will also add value to traditional computer science and geography discipline areas, such as big data analytics, remote sensing, geographic information systems (GIS) and science, and CyberGIS.

A grade of C or better must be achieved in all courses for successful completion of the certificate program. Students may transfer up to six credit hours of equivalent graduate courses into the program.

Requirements for Admission
Students who hold an undergraduate or a graduate degree, or are currently enrolled in a graduate or professional degree program
may apply for the Certificate in Geospatial Data Science program. Applicants must comply with the Murray State University requirements (see Graduate Admissions).

Unconditional Admission
To qualify for unconditional admission, an applicant must have an overall grade point average of 3.0 (on a 4.0 scale).

Conditional Admission
Students admitted conditionally are admitted to full standing after completing
(1) any remedial courses required by the Program Coordinator
(2) one semester of graduate work with an overall grade point average of 3.0 or above.

Total Course Requirements ... 14 hours
EES 612 Remote Sensing
EES 621 Geographic Information Systems
EES 693 Special Problems

Required Limited Electives ... 3 hours
Choose from the following approved electives:
BUS 684 Seminar in Geospatial Tools in Business
CIS 609 Data Warehouses and Business Intelligence
CIS 643 Advanced Business Analytics
CIS 646 Manager’s Guide to Database
CIS 695 Comprehensive Project in Computer Information Systems
EES 640 Advanced Remote Sensing
EES 660 Spatial Analysis Techniques
EES 678 Terrestrial Ecosystem Modeling
EES 679 Remote Sensing of Vegetation
EES 680 Advanced Geographic Information Systems (GIS)
EES 691 Special Problems
EES 692 Special Problems
EES 696 Understanding Scientific Communication
MKT 685 Seminar in Marketing Location Analytics
TSM 615 Information System Security

Institute of Engineering
263A Collins Center
270-809-3392

Chair: Danny Claiborne. Faculty: Bahadir, Bunget, Claiborne, Cobb, Crofton, Ford, Giltner, Hereford, Hildebrant, Kemp, Kobraei, Leedy, Lopez, Martin, Okuda, Ottway, Palmer, Payne, Perry, Ridley, Rogers, Schneiderman, Siebold, Thiede, Tubbs, Yarali, Zirbel.

The Institute of Engineering offers undergraduate programs in engineering, engineering technology, engineering graphics and design, physics and telecommunications systems management. It also offers a graduate program in applied engineering and technology management.

Murray State University offers a Bachelor of Science in Engineering (B.S.E.) as a major in engineering physics. The Engineering Physics program has four tracks in mechanical engineering, electrical engineering, biomedical engineering, and advanced physics. In all of these areas, students will learn to use advanced analytical techniques in solving engineering problems, and will develop the applied background to attack new engineering challenges.

Murray State’s Engineering Physics degree is an engineering program accredited by the Engineering Accreditation Commission of ABET (EAC/ABET). This accreditation will place a student on the pathway to become a licensed engineer in Kentucky and throughout the country. Recognition by this organization has been earned by 22 Engineering Physics programs nationwide.

The Institute of Engineering offers strong undergraduate programs in engineering technology, which are: architectural engineering technology, civil engineering technology, construction engineering technology, electromechanical engineering technology, environmental engineering technology, manufacturing engineering technology, and surveying engineering technology. Graduates from these programs are prepared to succeed in a modern industrial environment.

The Institute also offers an engineering graphics and design program. Graduates from this program are able to apply product and process design for products related to manufacturing or mechanical design.

Students interested in physics have two degree options. The traditional physics major is accompanied by a flexible area in applied physics, where a student can design curricular choices to fit their chosen professional goals. These degrees are well-suited to students desiring teaching certification, or intending to pursue graduate degrees or corporate/industrial research positions.

Kentucky’s Program of Distinction in Telecommunications Systems Management (TSM) is also offered by the Institute of Engineering. The TSM program is actually an interdisciplinary program between the Jesse D. Jones College of Science, Engineering and Technology and the Arthur J. Bauernfeind College of Business. The TSM program prepares graduates to work on cutting-edge information technologies related to wireless technology, security, and network administration while also applying concepts toward business decisions and critical strategic planning as it relates to telecommunications systems.

Engineering Accreditation
The B.S.E. in Engineering Physics (including all tracks in biomedical, electrical, mechanical and advanced physics) is an engineering program accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. This accreditation will place a student on the pathway to become a licensed engineer in Kentucky and throughout the country.

Engineering Technology Accreditation
The Engineering Technology Accreditation Commission of ABET (ETAC/ABET) accredits Murray State programs in civil and construction engineering technology. The Civil Engineering Technology/General Track and the Civil Engineering Technology/Construction Track programs are accredited by the Engineering Technology Accreditation Commission of ABET, http://www.abet.org.

AREA:

Engineering Physics
Bachelor of Science in Engineering

CIP 14.1201

University Studies Requirements 42 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 CHE 201 General College Chemistry
 MAT 250 Calculus and Analytic Geometry I
 PHY 235 Mechanics, Heat and Wave Motion
• Social and Self-Awareness and Responsible Citizenship
 ECO 231 Principles of Microeconomics
 or
 HON 232 Honors Seminar in Economics
University Studies Electives
MAT 308 Calculus and Analytic Geometry II
PHY 236 Mechanics, Heat and Wave Motion Laboratory

Core Courses ... 50 hrs
EGR 100T Transitions
EGR 101 Introduction to Engineering
EGR 140 Introduction to Computing Applications in Science and Engineering
EGR 240 Thermodynamics I
EGR 259 Statics
EGR 264 Linear Circuits I
EGR 330 Dynamics
EGR 363 Signals and Systems
EGR 375 Materials Science
EGR 390 Engineering Measurements
EGR 460 Electricity and Magnetism I
EGR 498 Senior Engineering Design I
EGR 499 Senior Engineering Design II
MAT 309 Calculus and Analytic Geometry III
MAT 338 Ordinary Differential Equations
PHY 255 Electricity, Magnetism and Light
PHY 256 Electricity, Magnetism and Light Laboratory
PHY 370 Introduction to Modern Physics
PHY 470 Optics

Technical Electives .. 24 hrs
Each student must complete at least 24 hours of technical electives. A minimum of 12 technical elective credit hours must be EGR courses. Completion of an emphasis is encouraged but not required. Fifteen credit hours must be exclusive to each emphasis for multi-emphasis students. Technical Electives must come from the courses listed in the elective emphases or EGR/PHY courses, 300-level and above, or as approved by department chair. A maximum of six technical elective credit hours may come from combinations of EGR/PHY 488, 489, 520, and EGR 388.

Advanced Physics Emphasis
EGR 330 Dynamics
EGR 460 Electricity and Magnetism I
Select nine hours of 300-level and above PHY courses beyond the core course requirements.

Completion of at least 24 hours is required in this track (12 hours must be EGR prefix courses).

Aerospace Engineering Emphasis
EGR 320 Fundamentals of Flight
EGR 330 Dynamics
EGR 359 Mechanics of Materials
EGR 420 Aerodynamics
EGR 422 Propulsion
and one of the following:
EGR 440 Thermal and Fluid Systems Laboratory
PHY 316 Introductory Astrophysics and Space Physics
or any mechanical engineering track course

Completion of at least 24 hours is required in this track (18 hours must be EGR prefix courses). Remaining nine hours of electives must be advisor approved.

Electrical Engineering Emphasis
EGR 460 Electricity and Magnetism I
Select four of the following courses:
EGR 360 Electric Machines
EGR 366 Analog Electronics I
EGR 376 Computational Analysis in Engineering
EGR 378 Logic Design I
EGR 425 Bio-inspired Intelligent Systems
EGR 461 Electricity and Magnetism II
EGR 463 Power Systems
EGR 466 Power Electronics
EGR 468 Digital Signal Processing

Completion of at least 24 hours is required in this track (18 hours must be EGR prefix courses). Remaining eight to nine hours of electives must be advisor approved.

Mechanical Engineering Emphasis
EGR 330 Dynamics
EGR 344 Fluid Mechanics
EGR 359 Mechanics of Materials
Select two of the following courses:
EGR 342 Thermodynamics II
EGR 346 Heat Transfer
EGR 392 Nondestructive Testing
EGR 430 Mechanical Vibrations
EGR 433 Control Systems
EGR 450 Mechanics and Materials Laboratory
EGR 459 Mechanical Design
EGR 475 Solid-State Physics and Engineering
ITD 102 CAD Applications

Any aerospace engineering track course

Completion of at least 24 hours is required in this track (18 hours must be EGR prefix courses). Remaining nine hours of electives must be advisor approved.

Mathematics Depth Elective 3-4 hrs
Each student must complete a mathematics depth elective chosen from MAT 335, 440, 442, 460, 508, 512, 513, 522, 523, 524, 525, 535, 538, 542, 545, 570; STA 450, 540, 541, 554 or as approved by the department chair.

Unrestricted Elective ... 0-1 hrs
The use of an unrestricted elective will depend on the number of hours taken from Technical Electives or the Mathematics Depth Elective.

Total Curriculum Requirements 120 hrs

1. This degree program has been approved by the Kentucky Education Professional Standards Board as a track for secondary education certification in physics. Students seeking certification via this track must complete the Engineering Physics curriculum and the courses required for secondary certification. For current information, students should consult an advisor in the Department of Adolescent, Career and Special Education and with Teacher Education Services.

2. This course is considered a program corequisite and may be shared with a minor or second major.

3. Students completing the track in biomedical instrumentation and intending to seek admission to medical school are encouraged to complete the following: BIO 321, 322, 333; CHE 312, 320, 325.

4. Technical Electives must come from the courses listed in the elective tracks or EGR/PHY courses, 300-level and above, or as approved by department chair.

Engineering Science Minor 22 hrs
EGR 240, 259, 264, and 330, plus nine additional hours of engineering-related courses approved by an advisor in the Department of Engineering and Physics. Six hours must be upper-level courses.
Pre-Engineering Curriculum (64 hrs)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 201</td>
<td>General College Chemistry</td>
</tr>
<tr>
<td>CHE 202</td>
<td>General Chemistry and Qualitative Analysis</td>
</tr>
<tr>
<td>EGR 140</td>
<td>Introduction to Computing Applications in Science and Engineering</td>
</tr>
<tr>
<td>MAT 250</td>
<td>Calculus and Analytic Geometry I</td>
</tr>
<tr>
<td>MAT 308</td>
<td>Calculus and Analytic Geometry II</td>
</tr>
<tr>
<td>MAT 309</td>
<td>Calculus and Analytic Geometry III</td>
</tr>
<tr>
<td>MAT 338</td>
<td>Ordinary Differential Equations</td>
</tr>
<tr>
<td>PHY 235</td>
<td>Mechanics, Heat and Wave Motion</td>
</tr>
<tr>
<td>PHY 236</td>
<td>Mechanics, Heat and Wave Motion Laboratory</td>
</tr>
<tr>
<td>PHY 255</td>
<td>Electricity, Magnetism and Light</td>
</tr>
<tr>
<td>PHY 256</td>
<td>Electricity, Magnetism and Light Laboratory</td>
</tr>
</tbody>
</table>

University Studies Requirements 38-44 hrs

(Rule Academic Degrees and Programs.)

Note: See required courses below before selecting Scientific Inquiry, Methodologies, and Quantitative Skills University Studies electives.

Required Courses .. 32 hrs

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 140</td>
<td>Introduction to Computing Applications in Science and Engineering</td>
</tr>
<tr>
<td>EGR 240</td>
<td>Thermodynamics I</td>
</tr>
<tr>
<td>EGR 390</td>
<td>Engineering Measurements</td>
</tr>
<tr>
<td>PHY 100T</td>
<td>Transitions</td>
</tr>
<tr>
<td>PHY 235</td>
<td>Mechanics, Heat and Wave Motion</td>
</tr>
<tr>
<td>PHY 236</td>
<td>Mechanics, Heat and Wave Motion Laboratory</td>
</tr>
<tr>
<td>PHY 255</td>
<td>Electricity, Magnetism and Light</td>
</tr>
<tr>
<td>PHY 256</td>
<td>Electricity, Magnetism and Light Laboratory</td>
</tr>
<tr>
<td>PHY 460</td>
<td>Electricity and Magnetism I</td>
</tr>
<tr>
<td>PHY 470</td>
<td>Optics</td>
</tr>
<tr>
<td>PHY 530</td>
<td>Mechanics I</td>
</tr>
<tr>
<td>PHY 580</td>
<td>Modern Physics I</td>
</tr>
</tbody>
</table>

Co-requisites for Major ... 6 hrs

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 201</td>
<td>General College Chemistry</td>
</tr>
<tr>
<td>CHE 202</td>
<td>General Chemistry and Qualitative Analysis</td>
</tr>
<tr>
<td>CSC 420</td>
<td>Numerical Analysis I</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>MAT 442</td>
<td>Introduction to Numerical Analysis</td>
</tr>
<tr>
<td>MAT 250</td>
<td>Calculus and Analytic Geometry I</td>
</tr>
<tr>
<td>MAT 308</td>
<td>Calculus and Analytic Geometry II</td>
</tr>
<tr>
<td>MAT 309</td>
<td>Calculus and Analytic Geometry III</td>
</tr>
<tr>
<td>MAT 338</td>
<td>Ordinary Differential Equations</td>
</tr>
</tbody>
</table>

Required Limited Electives ... 3 hrs

PHY/EGR courses numbered 300 or above.

Required Minor ... 3-21 hrs²

Unrestricted Electives .. 14-20 hrs

Total Curriculum Requirements 120 hrs

¹Fulfill University Studies requirements. Required for major if not taken as a University Studies requirement.

²CHE 201 and 202 fulfill requirements for a minor in chemistry; MAT 250, 308, 309, 338, and 442 fulfill requirements for a minor in math.

MAJOR:

Physics
Bachelor of Science/Bachelor of Arts CIP 40.0801

University Studies Requirements 38-44 hrs

(See Academic Degrees and Programs.)

Note: Requirements for teacher certification are established by the Kentucky Education Professional Standards Board. Students are cautioned that changes in these requirements may occur. For current information, student should check with an advisor in the Department of Adolescent, Career and Special Education and with Teacher Education Services.

University Studies Requirements 38-44 hrs

(See Academic Degrees and Programs.)

University Studies selections must include:

• Social and Self-Awareness and Responsible Citizenship

EDP 260 Psychology of Human Development

Note: Certification requires a grade of B or better in one English composition course and a B or better in a University Studies math course, public speaking, and EDU 180 or equivalent course. Additional requirements for admission to teacher education and student teaching must be met. See advisor and/or Office of Teacher Education Services for details.

Required Courses .. 32 hrs

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 140</td>
<td>Introduction to Computing Applications in Science and Engineering</td>
</tr>
<tr>
<td>EGR 240</td>
<td>Thermodynamics I</td>
</tr>
<tr>
<td>EGR 390</td>
<td>Engineering Measurements</td>
</tr>
<tr>
<td>PHY 100T</td>
<td>Transitions</td>
</tr>
<tr>
<td>PHY 235</td>
<td>Mechanics, Heat and Wave Motion</td>
</tr>
<tr>
<td>PHY 236</td>
<td>Mechanics, Heat and Wave Motion Laboratory</td>
</tr>
<tr>
<td>PHY 255</td>
<td>Electricity, Magnetism and Light</td>
</tr>
<tr>
<td>PHY 256</td>
<td>Electricity, Magnetism and Light Laboratory</td>
</tr>
<tr>
<td>PHY 460</td>
<td>Electricity and Magnetism I</td>
</tr>
<tr>
<td>PHY 470</td>
<td>Optics</td>
</tr>
<tr>
<td>PHY 530</td>
<td>Mechanics I</td>
</tr>
<tr>
<td>PHY 580</td>
<td>Modern Physics I</td>
</tr>
</tbody>
</table>

Co-requisites for Major ... 6 hrs

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 201</td>
<td>General College Chemistry</td>
</tr>
<tr>
<td>CHE 202</td>
<td>General Chemistry and Qualitative Analysis</td>
</tr>
<tr>
<td>CSC 420</td>
<td>Numerical Analysis I</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>MAT 442</td>
<td>Introduction to Numerical Analysis</td>
</tr>
<tr>
<td>MAT 250</td>
<td>Calculus and Analytic Geometry I</td>
</tr>
<tr>
<td>MAT 308</td>
<td>Calculus and Analytic Geometry II</td>
</tr>
<tr>
<td>MAT 309</td>
<td>Calculus and Analytic Geometry III</td>
</tr>
<tr>
<td>MAT 338</td>
<td>Ordinary Differential Equations</td>
</tr>
</tbody>
</table>

Required Limited Electives ... 3 hrs

PHY/EGR courses numbered 300-level or above.

Required for Secondary Certification 35 hrs

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDU 103</td>
<td>Issues and Practices of American Education</td>
</tr>
<tr>
<td>EDU 303</td>
<td>Strategies of Teaching</td>
</tr>
<tr>
<td>EDU 403</td>
<td>Structures and Foundations of Education</td>
</tr>
<tr>
<td>EDU 405</td>
<td>Evaluation and Measurement in Education</td>
</tr>
<tr>
<td>REA 427</td>
<td>Teaching Content Area Literacy in the Secondary School</td>
</tr>
<tr>
<td>SEC 420</td>
<td>Practicum in Secondary Schools</td>
</tr>
<tr>
<td>SEC 421</td>
<td>Student Teaching in the Secondary School</td>
</tr>
<tr>
<td>SEC 422</td>
<td>Extended Practicum</td>
</tr>
<tr>
<td>SED 300</td>
<td>Educating Students with Disabilities</td>
</tr>
</tbody>
</table>

Required Minor ... 3-21 hrs²
Total Curriculum Requirements .. 120-123 hrs

1 fulfill University Studies requirements. Required for major if not taken as a University Studies requirement.
2 CHE 201 and 202 fulfill requirements for a minor in chemistry; MAT 250, 308, 309, 338, and 442 fulfill requirements for a minor in math.
3 With a grade of B or better.
4 EDU 405 and SEC 420 must be taken together and two semesters before student teaching.
5 Must be taken one semester before student teaching.

Physics Teaching Specialization
The teaching specialization in physics is a path to secondary certification in physics, designed to accompany certification in another science content area. (All College of Education and Human Services secondary certification course requirements must be met.)

Note: Even though this program exceeds Murray State University’s requirements for a physics minor, in order for a physics minor to appear on a transcript, a minor must be declared, and all residential and graduation requirements must be met.

Requirements for teacher certification are established by the Kentucky Education Professional Standards Board and changes in these requirements may occur. Students should check with an advisor in the College of Education and Human Services for current information.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST 115</td>
<td>Introductory Astronomy</td>
</tr>
<tr>
<td>AST 116</td>
<td>Introductory Astronomy Laboratory</td>
</tr>
<tr>
<td>MAT 250</td>
<td>Calculus and Analytic Geometry I</td>
</tr>
<tr>
<td>MAT 308</td>
<td>Calculus and Analytic Geometry II</td>
</tr>
<tr>
<td>PHY 235</td>
<td>Mechanics, Heat and Wave Motion</td>
</tr>
<tr>
<td>PHY 236</td>
<td>Mechanics, Heat and Wave Motion Laboratory</td>
</tr>
<tr>
<td>PHY 255</td>
<td>Electricity, Magnetism and Light</td>
</tr>
<tr>
<td>PHY 256</td>
<td>Electricity, Magnetism and Light Laboratory</td>
</tr>
<tr>
<td>PHY 370</td>
<td>Introduction to Modern Physics</td>
</tr>
</tbody>
</table>

Required Limited Electives................................. 9 hrs
PHY/EGR courses numbered 300-level or above.

Physics Teaching Specialization.................................. 36 hrs

1 Corequisite of PHY 235.
2 Corequisite of PHY 255.

AREA:
Applied Physics
Bachelor of Science/Bachelor of Arts

University Studies Requirements 38-44 hrs
(See Academic Degrees and Programs.)

Note: See required courses below before selecting Scientific Inquiry, Methodologies, and Quantitative Skills University Studies electives.

Required Courses .. 33 hrs

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 140</td>
<td>Introduction to Computing Applications in Science and Engineering</td>
</tr>
<tr>
<td>EGR 240</td>
<td>Thermodynamics I</td>
</tr>
<tr>
<td>EGR 264</td>
<td>Linear Circuits I</td>
</tr>
<tr>
<td>PHY 100T</td>
<td>Transitions</td>
</tr>
<tr>
<td>PHY 235</td>
<td>Mechanics, Heat and Wave Motion</td>
</tr>
<tr>
<td>PHY 236</td>
<td>Mechanics, Heat and Wave Motion Laboratory</td>
</tr>
<tr>
<td>PHY 255</td>
<td>Electricity, Magnetism and Light</td>
</tr>
<tr>
<td>PHY 256</td>
<td>Electricity, Magnetism and Light Laboratory</td>
</tr>
<tr>
<td>PHY 370</td>
<td>Introduction to Modern Physics</td>
</tr>
<tr>
<td>PHY 580</td>
<td>Modern Physics I</td>
</tr>
<tr>
<td>PHY 460</td>
<td>Electricity and Magnetism I</td>
</tr>
<tr>
<td>PHY 470</td>
<td>Optics</td>
</tr>
<tr>
<td>PHY 530</td>
<td>Mechanics I</td>
</tr>
</tbody>
</table>

Total Curriculum Requirements 120-123 hrs

1 fulfill University Studies requirements. Required for major if not taken as a University Studies requirement.
2 CHE 201 and 202 fulfill requirements for a minor in chemistry; MAT 250, 308, 309, 338 and 442 fulfill requirements for a minor in math.
3 With a grade of B or better.
4 EDU 405 and SEC 420 must be taken together and two semesters before student teaching.
5 Must be taken one semester before student teaching.

Co-requisites for Area ... 6 hrs

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 201</td>
<td>General College Chemistry</td>
</tr>
<tr>
<td>CHE 202</td>
<td>General Chemistry and Qualitative Analysis</td>
</tr>
<tr>
<td>CSC 420</td>
<td>Numerical Analysis I</td>
</tr>
<tr>
<td>MAT 442</td>
<td>Introduction to Numerical Analysis</td>
</tr>
<tr>
<td>MAT 250</td>
<td>Calculus and Analytic Geometry I</td>
</tr>
<tr>
<td>MAT 308</td>
<td>Calculus and Analytic Geometry II</td>
</tr>
<tr>
<td>MAT 309</td>
<td>Calculus and Analytic Geometry III</td>
</tr>
<tr>
<td>MAT 338</td>
<td>Ordinary Differential Equations</td>
</tr>
</tbody>
</table>

Technical Electives... 24 hrs
Unrestricted Electives .. 13-19 hrs

Astronomy Minor ... 21 hrs

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST 115, 116, 316; PHY 130, 131, 132, 133, and six additional hours of approved astronomy courses numbered 300 and above. PHY 235 and 255 may be substituted for PHY 130 and 132 with approval from the department chair. Physics majors must take CHE 201 and EES 101 in place of PHY 130, 131, 132, and 133. Six hours must be upper-level courses.</td>
<td></td>
</tr>
</tbody>
</table>

Physics Minor ... 22 hrs

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 235, 236, 255, 256, 370, and nine additional hours of approved physics (PHY) or engineering physics (EGR) courses numbered 300 and above. PHY 130 and 131 may be substituted for PHY 235 and 236; PHY 132 and 133 may be substituted for 255 and 256, with approval from the department chair. Six hours must be upper-level courses.</td>
<td></td>
</tr>
</tbody>
</table>
Engineering Technology Accreditation
The Technology Accreditation Commission of ABET (TAC/ABET) accredits Murray State programs in civil and construction engineering technology. The Civil Engineering Technology/General Track and Construction Engineering Technology/Construction Track programs are accredited by the Technology Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012. Phone (410) 347-7700.

Professional Licensure
Students interested in pursuing a career as a professional land surveyor must complete courses specified by the Kentucky Board of Licensure for Professional Engineering and Land Surveyors (www.boels.ky.gov). Required courses may be taken as electives by students in the Civil Engineering Technology program under the supervision of an advisor. Students completing Board requirements normally sit for the Fundamentals of Surveying exam in their last semester at Murray State University.

Engineering Technology
The Engineering Technology programs are: Architectural Engineering Technology, Civil Engineering Technology, Construction Engineering Technology, Electromechanical Engineering Technology, and Environmental Engineering Technology.

Civil Engineering Technology
A baccalaureate degree in civil engineering technology provides students with a background in the design of steel and concrete structures, surveying, soil mechanics and foundations, construction materials, and engineering mechanics. Potential employers include construction companies, consulting engineering and architectural firms, state and federal governments, municipalities, testing laboratories, surveying firms, utilities, and materials suppliers.

The civil engineering technology program prepares graduates for careers in design (working with a team of engineers or architects in the preparation of engineering or architectural design documents), construction (as a field engineer, project engineer, or surveyor), or technical sales. An associate degree in civil engineering technology may also be obtained from Murray State University.

Architectural Engineering Technology
A baccalaureate degree in architectural engineering technology provides students with a background in architectural design, computer-aided design, building structures and structural design, steel and concrete structures, surveying and site planning, and construction estimating. Potential employers include architectural firms, construction (design/build) companies, consulting engineering firms, state and federal governments, municipalities, materials suppliers, and utilities.

Architectural engineering technologists are educated in the process of taking a project from the drawing to the completed structure. Working together with architects and engineers, they assist in producing drawings and specifications for major construction projects. Architectural engineering technology prepares graduates for careers in architectural design, planning, development, and construction as well as technical or sales positions in a variety of manufacturing organizations associated with the building industry. An architectural engineering technology graduate seeking registration/licensure as an architect would usually pursue a Master of Architecture degree, typically requiring two or three years of additional study.

Construction Engineering Technology
A baccalaureate degree in construction engineering technology provides students with experience in construction, estimating, project management, scheduling, surveying, building structures, construction materials, and engineering mechanics. The curriculum stresses the application of technical knowledge, construction methods, problem-solving ability, and communication skills toward the completion of large-scale construction projects. Career opportunities for the construction-engineering technologist are as diverse as the industry. Potential employers include construction companies, general contractors, subcontractors, construction equipment and materials suppliers, testing laboratories, governments, industrial companies, and utilities.

The construction engineering technology program prepares graduates for supervisory and managerial careers within the construction industry. With a degree in construction engineering technology, the student will be qualified for an entry-level position as a construction project engineer, project manager, estimator, sales engineer, or field engineer.

Environmental Engineering Technology
A baccalaureate degree in environmental engineering technology provides graduates with backgrounds in municipalities and industrial water and wastewater treatment system design and operations, water pollution control, solid and hazardous waste management and site remediation, air pollution control, and environmental regulatory compliance. Course work includes field and laboratory sampling and analysis plus design of pollution control systems.

Graduates obtain careers with industries, environmental consultants and remediation contractors, municipalities, testing laboratories, state or federal government agencies, and chemical manufacturing corporations.

Electromechanical Engineering Technology
A baccalaureate degree in electromechanical engineering technology provides students with backgrounds in mechanical and electrical systems, fluid power, controls, and industrial networks. Electromechanical graduates work in manufacturing and process plant engineering, operation, maintenance, new product design, systems design, system analysis, and systems integration.

The electromechanical engineering technologist is a blend of mechanical and electrical engineering technology, computer science, information technology, and control systems. Graduates have broad application backgrounds in automation, electronics, data acquisition, controls, programming, and mechanical and electrical science principles. This allows students to understand the design and operation of systems found in the plant environment.

Manufacturing Engineering Technology
A baccalaureate degree in manufacturing engineering technology provides students with a broad range of knowledge and skills related to industry and industrial supervision. Graduates from this program are exposed to the applied aspects of industrial processes, production systems, production management, computer integrated design, manufacturing systems, human relations and human resource development. The graduates from this program will generally work in one of a variety of industries working directly with engineers, designers, and production personnel as supervisors and technical support, utilizing skills in computer numerical control, hydraulics, machine tool processes, CAD, CAM, computer integration, industrial automation and system integration. Additional skills in electrical systems, accounting, marketing, human resource management and business management allows graduates to work in a variety of industrial environments.
Civil Engineering Technology

University Studies Requirements ... 23 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 PHY 130 General Physics I
 PHY 131 General Physics I Laboratory

Required Courses ... 32 hrs
CET 280 Plane Surveying
CET 284 Sustainable Design and Construction
CET 385 Construction Estimating I
ENG 324 Technical Writing
ENT 100T Transitions
ENT 287 Statics for Technology
ENT 358 Mechanical and Electrical Systems
ITD 107 Introduction to Technical Drawing and Computer-Aided Drafting

Support Courses ... 13 hrs
EES 101 The Earth and the Environment
MAT 130 Technical Math I
PHY 132 General Physics II Laboratory

Total Curriculum Requirements .. 62 hrs

AREA:
Civil Engineering Technology/General Track
Bachelor of Science .. 120-122 hrs

This track is ACCREDITED BY: Engineering Technology Accreditation Commission of ABET, http://www.abet.org

University Studies Requirements ... 44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 MAT 130 Technical Math I
 PHY 130 General Physics I
 PHY 131 General Physics I Laboratory
 PHY 132 General Physics II
 PHY 133 General Physics II Laboratory
• Social and Self-Awareness and Responsible Citizenship
 ECO 230 Principles of Macroeconomics
• University Studies Electives
 EES 101 The Earth and the Environment
 MAT 230 Technical Math II

Core Courses ... 41 hrs
CET 280 Plane Surveying
CET 284 Sustainable Design and Construction
CET 385 Construction Estimating I
CET 480 Construction Planning and Management
ENG 324 Technical Writing
ENT 100T Transitions
ENT 287 Statics for Technology
ENT 358 Mechanical and Electrical Systems
ENT 362 Hydraulics
ENT 393 Engineering Economy
ENT 409 Senior Project I
IOE 125 Analytic Methods in Engineering Technology

Emphasis .. 9-11 hrs
Choose one area of emphasis below:
Civil
 EES 202 Introduction to Geographic Information Science
 EES 507 Land Use Planning
 ITD 301 Architectural Design Studio I

Construction
 CET 386 Construction Estimating II
 CET 490 Construction Scheduling and Methods
 ITD 301 Architectural Design Studio I

Environmental
 CET 330 Water Quality Technology I
 CET 331 Water Quality Technology II
 CET 585 Remediation Technology

Total Curriculum Requirements .. 120-122 hrs

AREA: Civil Engineering Technology/Architectural Engineering Technology Track
Bachelor of Science .. 120-122 hrs

University Studies Requirements ... 44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 MAT 130 Technical Math I
 PHY 130 General Physics I
 PHY 131 General Physics I Laboratory
 PHY 132 General Physics II
 PHY 133 General Physics II Laboratory
• Social and Self-Awareness and Responsible Citizenship
 ECO 230 Principles of Macroeconomics
• University Studies Electives
 EES 101 The Earth and the Environment
 MAT 230 Technical Math II

Core Courses ... 41 hrs
CET 280 Plane Surveying
CET 284 Sustainable Design and Construction
CET 385 Construction Estimating I
CET 480 Construction Planning and Management
ENG 324 Technical Writing
ENT 100T Transitions
ENT 287 Statics for Technology
ENT 358 Mechanical and Electrical Systems
ENT 382 Hydraulics
ENT 393 Engineering Economy
ENT 419 Senior Project I
Science, Engineering and Technology

IOE 125 Analytical Methods in Engineering Technology
IOE 399 Professional Development Seminar I
IOE 488 Cooperative Education/Internship
ITD 107 Introduction to Technical Drawing and Computer-Aided Drafting

Track Courses .. 35 hrs
CET 298 Strength of Materials
CET 310 Anatomy of Buildings
CET 481 Structural Steel Design
CET 482 Reinforced Concrete Design
CET 483 Construction Materials
ITD 104 Computer Aided Design
ITD 301 Architectural Design I
ITD 401 Architectural Design II
ITD 503 Architectural Design III
Technical elective (3 hrs)

Total Curriculum Requirements 120 hrs

AREA: Civil Engineering Technology/Environmental Engineering Technology Track
Bachelor of Science CIP 15.0201

University Studies Requirements 44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
*Scientific Inquiry, Methodologies, and Quantitative Skills
MAT 130 Technical Math I
PHY 130 General Physics I
PHY 131 General Physics I Laboratory
PHY 132 General Physics II
PHY 133 General Physics II Laboratory

*Social and Self-Awareness and Responsible Citizenship
ECO 230 Principles of Macroeconomics

*University Studies Electives
EES 101 The Earth and the Environment
MAT 230 Technical Math II

Core Courses .. 41 hrs
CET 280 Plane Surveying
CET 284 Sustainable Design and Construction
CET 385 Construction Estimating I
CET 480 Construction Planning and Management
ENG 324 Technical Writing
ENT 100T Transitions
ENT 287 Statics for Technology
ENT 358 Mechanical and Electrical Systems
ENT 382 Hydraulics
ENT 393 Engineering Economy
ENT 419 Senior Project
IOE 125 Analytical Methods in Engineering Technology
IOE 399 Professional Development Seminar I
IOE 488 Cooperative Education/Internship
ITD 107 Introduction to Technical Drawing and Computer-Aided Drafting

Track Courses .. 37 hrs
CET 330 Water Quality Technology I
CET 331 Water Quality Technology II
CET 342 Air Quality Technology
CET 353 Solid and Hazardous Waste Management
CET 555 Environmental Regulatory Affairs
CET 585 Remediation Technology
CHE 111 Essentials of Chemistry and Biochemistry
ENT 286 Introduction to Environmental Engineering Technology
ENT 400 Energy Management
EES 202 Introduction to Geographic Information Science
STA 135 Probability and Statistics

Total Curriculum Requirements 122 hrs
AREA: Civil Engineering Technology/Surveying Engineering Technology Track
Bachelor of Science
CIP 15.0201

University Studies Requirements .. 44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:

- **Scientific Inquiry, Methodologies, and Quantitative Skills**
 - MAT 130 Technical Math I
 - PHY 130 General Physics I
 - PHY 131 General Physics I Laboratory
 - PHY 132 General Physics II
 - PHY 133 General Physics II Laboratory

- **Social and Self-Awareness and Responsible Citizenship**
 - ECO 230 Principles of Macroeconomics

- **University Studies Electives**
 - MAT 230 Technical Math II
 - PHY 132 General Physics II

Core Courses ... 41 hrs

- CET 280 Plane Surveying
- CET 284 Sustainable Design and Construction
- CET 385 Construction Estimating I
- CET 480 Construction Planning and Management
- ENG 324 Technical Writing
- ENT 100T Transitions
- ENT 287 Statics for Technology
- ENT 358 Mechanical and Electrical Systems
- ENT 393 Engineering Economy
- ENT 419 Senior Project
- ESS 101 The Earth and the Environment
- ENG 102 The Earth and the Environment
- MAT 230 Technical Math II

Track Courses ... 35 hrs

- CET 370 Route Surveying
- CET 381 Boundary Surveying I
- CET 410 Transportation Systems and Design
- CET 460 Geodesy
- CET 486 Boundary Surveying II
- CSC 202 Introduction to Geographic Information Science
- EES 521 Geographic Information Systems
- PHI 202 Ethics
- ITD 107 Introduction to Technical Drawing and Computer-Aided Drafting

Technical Electives ... 7 hrs

Total Curriculum Requirements .. 120 hrs

AREA: Electromechanical Engineering Technology
Bachelor of Science
CIP 15.0403

University Studies Requirements .. 43-47 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:

- **Scientific Inquiry, Methodologies, and Quantitative Skills**
 - MAT 130 Technical Math I
 - PHY 130 General Physics I

- **Social and Self-Awareness and Responsible Citizenship**
 - ECO 230 Principles of Macroeconomics

- **University Studies Electives**
 - MAT 230 Technical Math II

Core Courses ... 69 hrs

- EMT 110 Electrical Systems I
- EMT 210 Electrical Systems II
- EMT 201 Engineering Technology Simulation
- EMT 202 Engineering Technology Analysis
- EMT 261 Introduction to Fluid Power Systems
- EMT 262 Introduction to Fluid Power Systems Laboratory
- EMT 305 Electrical Machinery and Controls
- EMT 310 Programmable Logic Controllers
- EMT 312 Industrial Instrumentation
- EMT 320 Mechatronics
- EMT 351 Industrial and Commercial Power Distribution
- EMT 365 Dynamics for Technology
- EMT 455 Manufacturing Control Systems
- EMT 461 Motion Controls
- ENG 324 Technical Writing
- ENT 100T Transitions
- ENT 287 Statics for Technology
- ENT 393 Engineering Economy
- ENT 419 Senior Project I
- IOE 399 Professional Development Seminar I
- IOE 488 Cooperative Education/Internship
- ITD 102 CAD Applications
- TSM 301 Physical Network Theory

Technical Electives ... 7 hrs

Total Curriculum Requirements .. 120 hrs

1 A minimum grade of C is required in all EMT, ENT, and TSM prefix courses.

AREA: Manufacturing Engineering Technology
Bachelor of Science
CIP 15.0613

University Studies Requirements .. 45 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:

- **Scientific Inquiry, Methodologies, and Quantitative Skills**
 - MAT 130 Technical Math I
 - PHY 130 General Physics I
 - PHY 131 General Physics I Laboratory
 - STA 135 Introduction to Probability and Statistics

- **Social and Self-Awareness and Responsible Citizenship**
 - ECO 230 Principles of Macroeconomics

- **University Studies Electives**
 - MAT 230 Technical Math II

1 A minimum grade of C is required in all EMT, ENT, and TSM prefix courses.
Core Courses .. 64 hrs
EMT 110 Electrical Systems I
EMT 261 Introduction to Fluid Power Systems
EMT 262 Introduction to Fluid Power Systems Laboratory
EMT 310 Programmable Logic Controllers
EMT 312 Industrial Instrumentation
EMT 351 Power Distribution
ENG 324 Technical Writing
ENT 100T Transitions
ENT 393 Engineering Economy
IOE 350 Technology Management
IOE 399 Professional Development Seminar I
IOE 488 Cooperative Education/Internship
ITD 102 CAD Applications
ITD 130 Manufacturing Processes and Materials
ITD 204 Parametric Modeling and Rendering
ITD 330 Machine Tool Processes
MET 310 Manufacturing Analysis
MET 320 Control Systems
MET 400 Lean Manufacturing Systems
MET 410 Sustainable Management
MET 440 Quality Management Systems
MET 450 Systems Project Management

Technical Electives ... 13 hrs

Total Curriculum Requirements 120 hrs

Engineering Graphics and Design

A baccalaureate degree in engineering graphics and design provides students with the fundamentals of design principles, computer aided design, and commercial/industrial design standards. Graduates will be prepared to work with engineers and architects in designing, constructing and manufacturing in modern industrial and architectural corporations.

This broad based program emphasizes computer aided design, and design graphics including: mechanical engineering drawings, renderings, technical animations and 3D parametric design. Applied engineering and engineering design/CAD are typical job descriptors for engineering graphics and design graduates. Graduates typically find jobs in manufacturing companies, engineering consulting firms, and architectural firms utilizing cutting edge computer graphic design capabilities and applied engineering concepts in the design of modern processes, components and structures.

AREA:
Engineering Graphics and Design
Bachelor of Science

University Studies Requirements 42 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 CHE 105 Introductory Chemistry
 MAT 230 Technical Math II
 PHY 130 General Physics I
 PHY 131 General Physics I Laboratory
• Social and Self-Awareness and Responsible Citizenship
 ECO 231 Principles of Microeconomics
• University Studies Electives
 CSC 199 Introduction to Information Technology
 STA 135 Introduction to Probability and Statistics

Core Courses .. 78 hrs
CET 298 Strength of Materials
ENG 324 Technical Writing
ENT 287 Statics for Technology
IOE 350 Technology Management
IOE 399 Professional Development Seminar I
IOE 488 Cooperative Education/Internship
IOE 587 Quality Control
ITD 100T Transitions
ITD 101 Introduction to Design and Graphic Communications
ITD 104 Computer Aided Design
ITD 130 Manufacturing Processes and Materials
ITD 204 Parametric Modeling and Rendering
ITD 302 Applied Technical Drawing
ITD 303 Advanced Parametric Modeling
ITD 306 Engineering Graphics
ITD 330 Machine Tool Processes
ITD 333 ANSI Fundamentals for Mechanical Product Design
TD 403 Product and Tooling Design
ITD 404 Computer-Aided Engineering Design Graphics
ITD 498 Senior Design
MAT 130 Technical Math I

Technical Electives ... 8 hrs

Total Curriculum Requirements 120 hrs

Industrial Technology
Associate of Science CIP 15.0612

University Studies Requirements 22 hrs
(See Academic Degrees and Programs.)

University Studies selections must also include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 MAT 130 Technical Math I
 PHY 130 General Physics I
 PHY 131 General Physics I Laboratory
• Social and Self-Awareness and Responsible Citizenship
 ECO 231 Principles of Microeconomics

Required Courses .. 28 hrs
EMT 261 Introduction to Fluid Power Systems
EMT 262 Introduction to Fluid Power Systems Laboratory
IOE 399 Professional Development Seminar I
ITD 100T Transitions
ITD 101 Introduction to Design and Graphic Communications
ITD 104 Computer Aided Design
ITD 130 Manufacturing Processes and Materials
ITD 204 Parametric Modeling and Rendering
ITD 330 Machine Tool Processes
TSM 110 Electrical Systems I

Technical Electives ... 14 hrs

Total Curriculum Requirements 64 hrs

Environmental Technology Minor 21 hrs
CET 284, 330, 342, 353, 555, and ENT 286. Prerequisite courses are not applicable to this minor. Six hours must be upper-level courses.

Industrial and Engineering Technology Minor 21 hrs
Program must be approved by an advisor with at least six hours of courses at 300-level or above.
The Department of Industrial and Engineering Technology offers the Master of Science degree in Applied Engineering and Technology Management. This degree is designed for individuals who wish to further their knowledge of management, leadership, and technology. The program is appropriate for graduates with backgrounds in technology, engineering, science, and mathematics and other related fields who have significant business/industrial work experience.

The applied engineering and technology management degree places emphasis on the involvement with real situations and problems for an industrial setting. A broad range of selections are provided in the areas of resource management, supervision and training, quality control, environment and safety management, business and finance, research, communications, and information systems.

Requirements for Admission

Applicants must meet the Murray State University requirements (see Graduate Admissions). Additional requirements for unconditional and conditional admission are as follows. The Graduate Record Examination (GRE) is not required for admission to this program.

Unconditional

Admission to the Master of Science degree in Applied Engineering and Technology Management is open to persons holding a baccalaureate or higher degree from a regionally accredited college in engineering, engineering technology, science, or related fields. Persons holding degrees in other fields may also apply if the nature of the professional employment has provided significant technology-related experience. Courses included in the program of study may require prerequisite course work.

Unconditional admission requires a 2.75 grade point average (GPA based on an A equals 4.0).

Conditional

Students denied unconditional admission to the M.S. in Applied Engineering and Technology Management, but who meet University requirements for conditional admission, may petition for conditional admission. Conditional admission is usually reserved for applicants whose previous education and/or experience is evaluated by the department chair to indicate a likelihood of success. Students applying for conditional admission must have a GPA of 2.25 to 2.74. A student accepted conditionally will be expected to complete nine hours of prescribed work with a minimum 3.0/4.0 GPA. These initial nine hours are assigned by the advisor and may be in addition to the student’s program of study. After completion of these nine hours the Departmental Graduate Committee will evaluate the student’s progress. The first nine hours may include undergraduate or graduate courses as directed by the department. Depending on the student’s undergraduate preparation, undergraduate courses may be required before enrolling in any graduate courses. Graduate courses may be allowed concurrently with these undergraduate courses in special situations.

Language Proficiency

Applicants whose native tongue is not English or who did not graduate from an English speaking college or university must demonstrate language proficiency. Applicants must adhere to the university’s guidelines for language proficiency.

Master of Science

Applied Engineering and Technology Management

CIP 15.0000

The Applied Engineering and Technology Management program is designed for individuals who are seeking positions of increased leadership and responsibility in business, industry, and government. Emphasis is placed on involvement with real situations and problems. The student, in consultation with an advisor, will develop an interdisciplinary plan of study to increase skills in a specific technical area and to strengthen abilities to communicate effectively in the management of technical functions.

Total Course Requirements ... 30 hours

- CET 682 Industrial Environmental Management
- IOE 684 Engineering Economic Analysis
- IOE 691 Industrial Operations
- IOE 693 Systems Management Technology
- IOE 695 Industrial Supervision
- IOE 697 Research in Industrial and Engineering Technology

Electives ... 12 hrs

Select four electives with advisor approval. (No more than two courses total may be taken with the following prefixes: ACC, BUS, CIS, FIN, MGT, or MKT.)

Other Degree Requirements

- A written comprehensive examination is required as a component of graduation requirements.
- Independent study, special problems, and workshop courses may only be taken in special circumstances and with prior advisor and instructor approval.

1A basic statistics course or equivalent is required prior to enrolling in IOE 697.

Telecommunications Systems Management

Telecommunications systems are networks of leading-edge technologies that allow organizations and individuals throughout business and industry to communicate instantaneously around the world. Telecommunications systems provide the architectural structure for such activities as electronic commerce, electronic banking, video teleconferencing, distance learning, teledicine, data interchange, on-demand video, wireless technology, information security, and a host of other traditional and new uses for business and industry.

Students in the baccalaureate program will have the insight and ability to function in all areas of Telecommunications Systems Management (TSM) but will choose a program option that will support the aspect of management which interests them most - the physical system and its components, the software that drives the system, or the business structure and operations that depend on the system. In addition, they will be prepared to move on to the Master of Science in Telecommunications Systems Management if they so choose.

Telecommunications Systems Management is an interdisciplinary program drawing upon the strengths of the Bauerfeind College of Business and the Jesse D. Jones College of Science, Engineering and Technology. These programs which are jointly administered by the two colleges provide students a unique opportunity to develop both technical expertise and management expertise in this dynamic field.
AREA:
Telecommunications Systems Management
Bachelor of Science
CIP 11.0401

University Studies Requirements ... 41 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• **Scientific Inquiry, Methodologies, and Quantitative Skills**
 - MAT 140 College Algebra
 - PHY 125 Brief Introductory Physics
 - PHY 126 Brief Introductory Physics Laboratory
 - STA 135 Introduction to Probability and Statistics
• **Social and Self-Awareness and Responsible Citizenship**
 - ECO 231 Principles of Microeconomics
• **University Studies Electives**
 - CSC 101 Introduction to Problem Solving Using Computers
 - CSC 199 Introduction to Information Technology

Required Courses .. 58 hrs

- ACC 200 Principles of Financial Accounting
- CIS 307 Decision Support Technologies
- CIS 317 Principles of Information Systems Analysis and Design
- CSC 232 Programming in C#
- ENG 324 Technical Writing
- FIN 330 Principles of Finance
- IOE 350 Technology Management
- IOE 399 Professional Development Seminar I
- MKT 360 Principles of Marketing
- TSM 100T Transitions
- TSM 134 Introduction to Telecommunications Systems Management
- TSM 232 Operating Systems
- TSM 233 Network Services
- TSM 241 Networking Fundamentals
- TSM 301 Physical Network Theory
- TSM 320 Introduction to Wireless Technology
- TSM 343 Protocol Analysis
- TSM 351 Principles of Information Security
- TSM 411 Network Design, Operations and Management
- TSM 443 Telephone Technology
- TSM 488 Cooperative Education/Internship

Selected Emphasis ... 21 hrs
Choose one of the methods of completion below:
1) Select 21 hours from any of the classes listed below or
2) Select two emphasis areas and complete at least 21 hours

Note: When selecting courses for an area of emphasis or as an elective, a
maximum of nine hours may be selected from courses with a business
prefix including: MGT or MKT. Adherence to course prerequisites is critical.

Wireless Communications Electronics
- TSM 321 Wireless Communications
- TSM 322 Wireless Communications II
- TSM 323 Wireless Mobile Internet
- TSM 421 Mobile Satellite Communications

Cybersecurity
- TSM 352 System Security
- TSM 353 Network Security
- TSM 440 Information Policy and Security Auditing
- TSM 441 Advanced Information Security

Network and Systems Administration
- CSC 310 Database Administration
- CSC 360 Scripting Languages
- TSM 450 Telecommunications Policy and Management
- TSM 517 Systems Planning

Approved Electives
- CSC 370 Introduction to Artificial Intelligence
- ECO 335 Economics and Public Policy of Telecommunications Industry
- LSC 443 Fundamentals of Operations and Technology
- MGT 358 Entrepreneurial Business Plan Development
- MKT 475 Marketing Strategies in E-Commerce
- TSM 360 Virtualized Enterprise Systems
- TSM 444 Enterprise Networks

Total Curriculum Requirements ... 120 hrs

1) Maximum of three hours Internship or Cooperative Education counts
toward a degree.

Telecommunications Systems Management Minor 22 hrs
TSM 134, 135, 232, 233, and 241. Nine hours of advisor approved
electives. Six hours must be 300- or 400-level courses.

Graduate Program
Graduate Coordinator - Michael Bowman
270-809-6218

The master’s program in telecommunications systems management provides students a core of fundamental courses and the
concentration of choosing a specialization within the curriculum. Although students in the master’s program will have the insight
and ability to manage all aspects of telecommunications systems, the program concentration choice will support the aspect of
management which interests them most, the physical systems and its components or the business structure and operations that depend
on the system.

Requirements for Admission
Applicants must meet the Murray State University requirements
(see Graduate Admissions).

Unconditional
For a TSM applicant to be unconditionally admitted to the program, an applicant must satisfy one of two formulas:

| GMAT Users: | (200 x UGPA) + GMAT ≥ 1,000 |
| GRE Users: | GRE ≥ 321 - (11.66 x GPA) - (Combined quantitative and verbal sections only) |

Note: The GRE formula uses the combined score from the quantitative and verbal sections only. Ask the Educational Testing Service (ETS) to send scores directly to Murray State University using our institution code: 1494.

In addition, international candidates must take the TOEFL and score 79 overall with no band less than 16, or the IELTS and score
6.5 with no band less than 6.0, if English is not their native language or they have not graduated from an accredited English speaking
university.

Conditional
Applicants to the TSM graduate program may be admitted conditionally if their overall GPA is 2.75 or higher, or at least 3.0 for their
last 60 hours of undergraduate study. Full admission to the program will be granted in one of only two ways, namely:

1) The applicant takes TSM 601, TSM 610, and one other core
course (ACC 604, TSM 602, TSM 603, TSM 607, TSM 610, or TSM 630) as their first nine hours of the program and earns a GPA not less than 3.33 from the three core courses; or
2) the applicant takes the GMAT or GRE and meets the unconditional admission formula within their first semester in the program.

If neither of these two conditions is met, the student will be dropped from the program even if they have already taken graduate coursework.

International Admission
Applicants, from any country where English is a second language, will be required to demonstrate English language proficiency. This can be done by taking the Test of English as a Foreign Language (TOEFL) exam and score at least:
1) 79
2) Minimum of 16 in each band
or International English Language Testing System (IELTS) exam and score 6.5 on the academic test (with no band <6.0) to be fully admitted into the program.

Master of Science
Telecommunications Systems Management CIP 11.0401

NON-THESIS REQUIREMENTS ONLY
Total Course Requirements 30 hours
ACC 604 Quantitative Financial Controls
TSM 601 Telecommunications Principles
TSM 602 Telecommunications Systems
TSM 603 Telecommunications Project Management
TSM 607 Advanced Telecommunications Project Management
TSM 610 Telecommunication Networks Management
TSM 630 Telecommunications Legal Environment: Law, Policy and Regulations
TSM 680 Telecommunications Solution Development Electives (6 hrs)
Only one elective can be an ACC, BUS, CIS, FIN, MGT, or MKT prefix. Prefixes with no restrictions include: ECO, IOE, and TSM. Other prefixes may be used with director’s approval. Check course descriptions for prerequisites. Not all 600-level courses are offered online.

Department of Mathematics and Statistics
6C9 Faculty Hall
270-809-2311

The mission of the Department of Mathematics and Statistics is to engage the larger mathematical community through scholarship and research, to provide our service region with mathematical and statistical support for its educational and industrial objectives, and to equip our students with mathematical skills which they may apply in further degree programs and careers requiring expertise in mathematics. In particular, through our instruction and guidance we endeavor to provide our students with an understanding of mathematical ideas, and the ability to reason mathematically, analyze real-world problems with mathematical techniques, and continue to read, learn, and communicate mathematics.

The department offers a major in mathematics, an area in mathematics with secondary certification, a major in mathematics with secondary certification, an area in applied mathematics, and an area in mathematics with a pre-MBA track. In these programs the student will learn mathematics as a fundamental discipline and as an essential tool in most other disciplines. Mathematics is also quite useful as a minor or second major. Additionally, the common awareness that mathematics is a substantial subject will enhance the prospects of any student who demonstrates a facility with the material. The minors offered by the department are actuarial science, applied statistics, mathematical biology, and mathematics.

Graduates with a major have gone on to careers in teaching, science, and industry. Some have improved their entry level prospects via graduate study at Murray State and/or in nationally known Ph.D. programs.

The area in applied mathematics will prepare the student for a career in business, industry, government or academics. The area consists of a core of applied mathematics courses and a 18-hour track in a related field. Each track contains further mathematical training, computer programming experience, and a broad study of a discipline which illustrates applications of mathematics. The program is flexible and, by its interdisciplinary nature, will provide the student with an understanding and experience in modeling and solving relative problems.
Major: Mathematics/Secondary Certification (Grades 8-12) Track
Bachelor of Science/Bachelor of Arts CIP 27.0101

University Studies Requirements ... 43-44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• **Scientific Inquiry, Methodologies, and Quantitative Skills**
MAT 250 Calculus and Analytic Geometry I
MAT 308 Calculus and Analytic Geometry II

• **Social and Self-Awareness and Responsible Citizenship**
PSY 180 General Psychology

• **University Studies Electives**
MAT 309 Calculus and Analytic Geometry III

Note: Certification requires a grade of B or better in one English composition course and a B or better in a University Studies math course, public speaking, and EDU 180 or equivalent course. Additional requirements for admission to teacher education and student teaching must be met. See advisor and/or Office of Teacher Education Services for details.

Required Courses .. 20 hrs

MAT 100T Transitions
MAT 312 Mathematical Reasoning
MAT 335 Matrix Theory and Linear Algebra
MAT 517 Foundations of Geometry
MAT 550 Teaching Mathematics
MAT 551 Mathematics for Teachers
STA 540 Mathematical Statistics I

Required Limited Electives .. 18-20 hrs

Three MAT courses (3- or 4-credit hour) selected from MAT 338 and MAT or STA courses numbered 400 or above including:
- at least one of the following:
 - MAT 513 Modern Algebra I
 - MAT 516 Introduction to Topology
 - MAT 525 Advanced Calculus I

and at least one of the following:

- MAT 442 Introduction to Numerical Analysis
- MAT 506 Mathematical Modeling I
- MAT 524 Boundary Value Problems
- STA 541 Mathematical Statistics II

An additional course (at least 3 credit hours) selected from MAT 338 and MAT or STA courses numbered 400 or above.

and

At least three (3- or 4-credit hour) courses selected from courses numbered 400 or above or from courses related to the application of mathematics selected from a list approved by the Department of Mathematics and Statistics.

Co-Requirement ... 3 hrs
One course in computer programming selected from: CSC 145, 232, 235, or EGR 140.

Required for Secondary Certification 33 hrs

EDU 180 Exploring the Teaching Profession

EDU 280 Educating for Human Development

EDU 380 Inclusive Teaching of Diverse Learners

EDU 480 Effective Pedagogy

EDU 485 Professional Perspectives for Teaching

SEC 420 Practicum in Secondary Schools

SEC 421 Student Teaching in the Secondary School

SEC 422 Extended Practicum

Unrestricted Electives .. 0-3 hrs

Total Curriculum Requirements 120-123 hrs

1With a grade of B or better.

2Must be taken together and two semesters before student teaching.

3Must be taken one semester before student teaching.

MAJOR:

Mathematics/Secondary Certification (Grades 8-12) Track
Bachelor of Science/Bachelor of Arts CIP 27.0101

University Studies Requirements ... 43-44 hrs
(See Academic Degrees and Programs.)

University Studies selections must include:
• **Scientific Inquiry, Methodologies, and Quantitative Skills**
MAT 250 Calculus and Analytic Geometry I
MAT 308 Calculus and Analytic Geometry II

• **Social and Self-Awareness and Responsible Citizenship**
PSY 180 General Psychology

• **University Studies Electives**
MAT 309 Calculus and Analytic Geometry III

Note: Certification requires a grade of B or better in one English composition course and a B or better in a University Studies math course, public speaking, and EDU 180 or equivalent course. Additional requirements for admission to teacher education and student teaching must be met. See advisor and/or Office of Teacher Education Services for details.

Required Courses .. 17 hrs

MAT 100T Transitions
MAT 312 Mathematical Reasoning
MAT 335 Matrix Theory and Linear Algebra
MAT 517 Foundations of Geometry
MAT 550 Teaching Mathematics
STA 540 Mathematical Statistics I

Required Limited Electives .. 9 hrs

Three MAT courses (3- or 4-credit hour) selected from MAT 338 and MAT or STA courses numbered 400 or above including:
- at least one of the following:
 - MAT 513 Modern Algebra I
 - MAT 516 Introduction to Topology
 - MAT 525 Advanced Calculus I

and at least one of the following:

- MAT 442 Introduction to Numerical Analysis
- MAT 506 Mathematical Modeling I
- MAT 524 Boundary Value Problems
- STA 541 Mathematical Statistics II

Co-Requirement ... 3 hrs
One course in computer programming selected from: CSC 145, 232, 235, or EGR 140.

Required Minor ... 21 hrs

Required for Secondary Certification 33 hrs

EDU 303 Strategies of Teaching
EDU 403 Structures and Foundations of Education
EDU 405 Evaluation and Measurement in Education
REA 427 Teaching Content Area Literacy in the Secondary School
SEC 420 Practicum in Secondary Schools
SEC 421 Student Teaching in the Secondary School
SEC 422 Extended Practicum
SED 300 Educating Students with Disabilities
Total Curriculum Requirements 126-130 hrs
1With a grade of B or better.
2This is a University Studies writing intensive course.
3This is a University Studies technology intensive course.
4EDU 405 and SEC 420 must be taken together and two semesters before student teaching.
5Must be taken one semester before student teaching.

AREA:
Mathematics/Applied Mathematics Track
Bachelor of Science/Bachelor of Arts CIP 27.0101

University Studies Requirements 38-44 hrs
(See Academic Degrees and Programs.)

Required Courses .. 31 hrs
MAT 100T Transitions
MAT 250 Calculus and Analytic Geometry I
MAT 308 Calculus and Analytic Geometry II
MAT 309 Calculus and Analytic Geometry III
MAT 312 Mathematical Reasoning
MAT 335 Matrix Theory and Linear Algebra
MAT 338 Ordinary Differential Equations
MAT 442 Introduction to Numerical Analysis
STA 540 Mathematical Statistics I

Required Limited Electives................................... 27-28 hrs
A. Three (3- or 4-credit hour) courses selected from MAT courses numbered 400 or above.
B. Five or six courses related to the application of mathematics. Must total at least 18 hours and be approved by the advisory committee.4

Co-Requirements.. 6 hrs
Two courses in computer programming selected from a list approved by the Department of Mathematics and Statistics.

Unrestricted Electives.. 11-18 hrs

Total Curriculum Requirements 120 hrs
1This is a University Studies technology intensive course.
2This is a University Studies writing intensive course.
3This is a University Studies technology intensive course.
4The program is very flexible. For example, an emphasis in either biology, chemistry, computer science, earth and environmental science, engineering physics, statistics and finance, or actuarial science.

Unrestricted Electives.. 12-23 hrs

Required Limited Electives................................... 12-13 hrs
Four (3- or 4-credit hour) courses selected from MAT 338 and MAT courses numbered 400 or above.

Co-Requirements.. 3 hrs
One course in computer programming selected from: CSC 145, 232, 235, or EGR 140.

AREA:
Mathematics/Pre-MBA Track
Bachelor of Science/Bachelor of Arts CIP 27.0101

University Studies Requirements 43-53 hrs
(See Academic Degrees and Programs.)

Required Courses .. 39 hrs
ACC 200 Principles of Financial Accounting
ACC 201 Principles of Managerial Accounting
BUS 355 Information Systems and Decision Making
CSC 199 Introduction to Information Technology
FIN 330 Principles of Finance
LSC 343 Fundamentals of Operations and Technology
MAT 100T Transitions
MAT 312 Mathematical Reasoning
MAT 335 Matrix Theory and Linear Algebra
MGT 350 Fundamentals of Management
MKT 360 Principles of Marketing
STA 540 Mathematical Statistics I
STA 565 Applied Statistics I

University Studies Electives 21 hrs
Students not in a mathematics program take one of STA 135, 235, or EGR 140.

Area Studies Electives 23 hrs
MKT 355 Principles of Marketing
MAT 330 Calculus and Analytic Geometry II
MAT 331 Calculus and Analytic Geometry III
Graduate Program
Graduate Coordinator - Timothy Schroeder

The Master of Science and Master of Arts degrees are designed to provide students with the opportunity to study graduate level mathematics so that they may (1) obtain preferred employment in mathematics with government or industry, (2) teach at the junior college level or be better prepared to teach at the secondary school level, or (3) continue working toward a doctor of philosophy degree.

The Master of Arts program is a broadly based program which includes a study of algebra, analysis, topology, and the foundations of mathematics. The Master of Science program consists of a core of applied mathematics together with a core (at most nine hours) in an allied field such as business, computer science, or physics. The program is flexible and is particularly suited to meet the needs of students preparing for careers in business, industry, or government. The department also offers the Master of Arts in Teaching degree in mathematics. This program is designed for certified teachers who wish to strengthen their discipline-based background and keep up with current information in educational theory, curriculum, and research.

All graduate programs in mathematics are planned in close consultation with the department graduate committee and are subject to its approval.

Requirements for Admission
Applicants must meet the Murray State University requirements (see Graduate Admissions). Additional requirements for unconditional and conditional admission to M.S. or M.A. programs are as follows:

Unconditional
- Bachelor’s degree from a regionally accredited college with a major (or equivalent) in mathematics or a related field;
- Overall GPA of 3.0 or above;
- Minimal GPA of 3.0 in all mathematics courses beginning with the first calculus course;
- Minimal GPA of 3.0 in all major courses; and
- If the major is in a related field (not mathematics), the student must have credit for three calculus courses (including a multivariable calculus course), a proof-based course, a matrix/linear algebra course, and a differential equations course.

Conditional
Recommendation of the department graduate committee or
- A bachelor’s degree from a regionally accredited college with a major in a related field and at least a 3.0 GPA in their major courses;
- Credit for three calculus courses (including a multivariable calculus course), a proof based course, and a matrix/linear algebra course with a 3.0 GPA in all mathematics courses beginning with the last elementary calculus course;
- GPA of 3.0 or above in all mathematics courses beginning with the last elementary calculus course; and
- Two letters of recommendation from college teachers addressing the candidate’s ability to do mathematics graduate work.

Master of Arts
Mathematics

THESIS REQUIREMENTS
Total Course Requirements .. 30 hours
MAT 725 Integration Theory
MAT or STA courses, 600- or 700-level (21 hrs)
MAT 798-799 Research and Thesis (6 hrs)

Other Degree Requirements
- Oral defense and examination of thesis.

NON-THESIS REQUIREMENTS
Total Degree Requirements 30 hours
MAT 725 Integration Theory
and six hours chosen from MAT 716, 721, 722, 723 or 726
MAT or STA courses, 600- or 700-level (21 hrs)

Other Degree Requirements
Program of study must include MAT 614 or 721 and MAT 616 or 716.
Comprehensive examinations over coursework.

1 All coursework must be approved by the department graduate committee. The student must complete two, two-course sequences. If the student has not completed two semesters of advanced calculus then one of the sequences must be MAT 625-626. At most, one of these sequences may be a completion of a sequence that was started as an undergraduate.

Master of Science
Mathematics

THESIS REQUIREMENTS
Total Course Requirements 33 hours
MAT or STA courses, 700-level (3 hrs)
MAT or STA courses, 600 or 700-level (15-24 hrs)
Allied field, 600 or 700-level (0-9 hrs)
MAT 798-799 Research and Thesis (6 hrs)

Other Degree Requirements

NON-THESIS REQUIREMENTS
Total Course Requirements 33 hours
MAT or STA courses, 700-level (9 hrs)
MAT or STA courses, 600 or 700-level (15-24 hrs)
Allied field, 600 or 700-level (0-9 hrs)

Other Degree Requirements
An advanced course in real analysis (MAT 7251). Comprehensive examinations over coursework.

1 All coursework must be approved by the departmental graduate committee. The student must complete two, two-course sequences. If the student has not completed two semesters of advanced calculus then one of the sequences must be MAT 625-626. At most, one of these sequences may be a completion of a sequence that was started as an undergraduate.
Master of Arts in Teaching Mathematics/Mathematics Teacher Leader CIP 27.0101

The Master of Arts in Teaching (M.A.T.) program is designed for certified teachers who wish to strengthen their background in mathematics and keep up with current information in educational theory, curriculum and research. The program provides for both reasonable depth in the mathematics area and graduate-level exposure in supporting disciplines. Completion of this program fulfills the requirements for Rank II classification. A student portfolio is required.

Requirements for Admission
Applicants must meet the Murray State University requirements (see Graduate Admissions). Additional requirements for unconditional and conditional admission to the M.A.T. program are as follows.

Unconditional
- Completion of requirements for teaching certification.
- Documentation of secondary teacher certification in the United States or comparable teacher qualification document from another country.
- Documentation of current certification for the duration of the program.
- Minor in mathematics with 3.0 minimum mathematics GPA.

Conditional
- See MSU requirements (see Graduate Admissions) and conditional admission requirements for certification (see College of Education and Human Services).
- Completion of requirements for teaching certification.
- Documentation of primary, middle, or secondary teacher certification in the United States or comparable teacher qualification document from another country.
- Documentation of current certification for the duration of the program.
- At least two calculus courses and two approved upper-level mathematics courses; and
- Two letters of recommendation from college teachers addressing the ability of the student to complete an M.A.T. degree in mathematics.

NON-THESIS REQUIREMENTS ONLY
Total Course Requirements ... 33 hours
MAT or STA courses, 600- or 700-level (18 hrs)

Education Courses
EDU 600 Introduction to Teacher Leadership
EDU 631 Classroom and Management and Student Motivation
EDU 633 Curriculum Development
EDU 637 Instruction for Diverse Learners
EDU 639 Research to Improve Student Learning\(^1\) \(^2\)
EDU 640 Exit Seminar in Teacher Leadership

Other Degree Requirements
Students must complete EDU 600 before enrolling in EDU 639.

Master of Arts in Education Secondary Teacher Leader with Mathematics Concentration CIP 13.1205

The Department of Mathematics and Statistics provides instruction in support of the M.A.Ed. in Secondary Teacher Leader with a concentration in mathematics. Prospective students should contact the graduate coordinator in the College of Education and Human Services for details on advising and graduate program design.

Department of Occupational Safety and Health
157 Collins Center
270-809-2488

Chair: Tracey Wortham. Faculty: Abulhassan, Atieh, Boyd, Byrd, Keller, Khalil, Medford, Morris, Spicer, Wilbanks.

The Department of Occupational Safety and Health provides related curriculum offerings at the baccalaureate and master's levels. Service courses are offered for individuals majoring in other fields such as business, science, health, psychology, education, and engineering technology. The department also offers a technical minor and a Master of Science degree, including an online Master of Science program with an emphasis in safety management that is equivalent to the on-campus program. The degree programs are designed to provide the technical and professional knowledge required by individuals pursuing professional careers in accident prevention, loss-control management and supervision, inspection and control of occupational hazards, industrial hygiene or environmental health and safety.

Occupational Safety and Health Track
This track is designed to provide the technical and professional knowledge required by individuals pursuing professional careers in accident prevention, loss control management and supervision, inspection and control of occupational hazards, and industrial hygiene.

Environmental Health and Safety Track
This track is designed to provide the technical and professional knowledge required by individuals pursuing professional careers in environmental issues and affairs such as water quality, air quality, and solid and hazardous waste management.

Requirements for Admission
Students may declare OSH as their area of choice at any point. However students must be formally admitted into the OSH program before they can enroll in restricted classes which are OSH 353 and 400- (excluding 488) and 500-level OSH classes. In order to be admitted to the OSH program, a student must (1) have completed at least 30 credit hours of coursework directly applicable to an OSH degree from the OSH University Studies requirements, required core courses, non-restricted OSH classes at the 100-, 200- and 300-levels, and technical electives, with a minimum GPA of 2.50; (2) have no grade less than a C in an OSH class; (3) complete an application packet for admission to the program; (4) be successfully reviewed by the OSH program admissions committee; (5) apply by February 1 for summer/fall enrollment or by September 1 for spring enrollment; (6) follow the most current bulletin when admitted to the program. Admission is competitive and based on available space. Admission is subject to application and careful evaluation by the OSH program admissions committee.
Degree Requirements

All occupational safety and health majors and minors must earn a grade of C or better in all OSH courses. Any OSH course with a grade below a C must be repeated. The maximum number of times a student may enroll in an OSH class is twice; this includes audits and withdrawals after the first week of class. Exceptions would be made only if the student was forced to drop the class due to a life-changing event and not due to performance in the class. If a grade less than C is received in any OSH course for a second time, the course cannot be repeated and the student is dismissed from the program and is not eligible for readmission. A cumulative grade point average of at least 2.50 must be maintained to graduate.

AREA:

Occupational Safety and Health/Environmental Health and Safety Track
Bachelor of Science

University Studies Requirements

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 BIO 101 Biological Concepts
 CHE 105 Introductory Chemistry¹
 MAT 230 Technical Math II
• Social and Self-Awareness and Responsible Citizenship
 PSY 180 General Psychology
• University Studies Electives
 CSC 199 Introduction to Information Technology²
 STA 135 Introduction to Probability and Statistics

Required Core Courses

ITD 120 Processes and Materials
MGT 350 Fundamentals of Management
OSH 100T Transitions
OSH 192 Introduction to Occupational Safety and Health
OSH 299 Professional Development Seminar I
OSH 310 Fire and Emergency Preparedness Preplanning
OSH 311 Hazardous Materials and Emergency Planning
OSH 320 Environmental and Occupational Health Engineering Technology
OSH 353 Prevention of Musculoskeletal Disorders in the Workplace
OSH 387 OSH Standards
OSH 420 Fundamentals of Industrial Hygiene
OSH 425 Physical Agents
OSH 450 Practical Application Lab
OSH 452 Systems Approach to Hazard Control
OSH 488 Cooperative Education/Internship
OSH 550 Safety and Health Program Management and Training
OSH 591 Engineering and Technical Aspects of Safety
PHY 125 Brief Introductory Physics
PHY 126 Brief Introductory Physics Lab

Safety Courses

OSH 101 Emergency Medical Training
OSH 384 Construction Safety
OSH 445 Loss Control Management and Measurement
OSH 546 Fundamentals of Risk Management

Technical electives (15 hrs)
(Must be approved by advisor and chosen from the Technical Electives list below and/or the Environmental Health and Safety Track.)

Technical Electives

Choose from the following:
CET 310 Anatomy of Buildings
CET 342 Air Quality Technology
CET 353 Solid Hazardous Waste Management
CET 385 Construction Estimating I
CET 480 Construction Planning and Management
CET 555 Environmental Regulatory Affairs
CET 585 Remediation Technology
CHE 120 Chemical Laboratory Safety
CHE 210 Brief Organic Chemistry
CHE 215 Organic Chemistry Laboratory
COM 384 Communication Skills for Professionals
COM 439 Conflict and Communication
CRJ 140 Introduction to Criminal Justice
CRJ 355 Security in Business and Industry
CRJ 425 Terrorism
MGT 550 Human Resource Management
MGT 575 Labor-Management Relations
OSH 330 Global Issues in OSH¹
OSH 371 Professional Internship II
OSH 412 Emergency Management
OSH 453 Human Factors in Safety Engineering
OSH 488 Cooperative Education/Internship⁴
OSH 499 Professional Development Seminar II
OSH 536 Motor Fleet Safety
OSH 571 Problems in Safety and Health
OSH 578 Workshop in Safety and Health
PSY 405 Industrial and Organizational Psychology
SPA 107 Basic Spanish and Culture for Occupational Safety and Health

Total Curriculum Requirements

123 hrs

¹Course must contain lab component.
²CSC 199 can be substituted by another computer related course with advisor’s approval.
³May be repeated for additional credit.
⁴May be repeated for a second experience.

AREA:

Occupational Safety and Health/Environmental Health and Safety Track
Bachelor of Science

University Studies Requirements

University Studies selections must include:
• Scientific Inquiry, Methodologies, and Quantitative Skills
 BIO 101 Biological Concepts
 CHE 105 Introductory Chemistry¹
 MAT 230 Technical Math II
• Social and Self-Awareness and Responsible Citizenship
 PSY 180 General Psychology
• University Studies Electives
 CSC 199 Introduction to Information Technology²
 STA 135 Introduction to Probability and Statistics
Required Core Courses ... 51 hrs
ITD 120 Processes and Materials
MGT 350 Fundamentals of Management
OSH 100T Transitions
OSH 192 Introduction to Occupational Safety and Health
OSH 299 Professional Development Seminar I
OSH 310 Fire and Emergency Preparedness Preplanning
OSH 311 Hazardous Materials and Emergency Planning
OSH 320 Environmental and Occupational Health Engineering Technology
OSH 353 Prevention of Musculoskeletal Disorders in the Workplace
OSH 387 OSH Standards
OSH 420 Fundamentals of Industrial Hygiene
OSH 425 Physical Agents
OSH 450 Practical Application Lab
OSH 452 Systems Approach to Hazard Control
OSH 488 Cooperative Education/Internship
OSH 550 Safety and Health Program Management and Training
OSH 591 Engineering and Technical Aspects of Safety
PHY 125 Brief Introductory Physics
PHY 126 Brief Introductory Physics Lab

Environmental Health and Safety Courses 30 hrs
CET 330 Water Quality Technology I
CET 331 Water Quality Technology II
OSH 511 Hazardous Waste Site Operations
OSH 523 Occupational Diseases
OSH 527 Air Contaminants and Industrial Ventilation
Technical electives (15 hrs)
(Must be approved by advisor and chosen from the Technical Electives list below and/or the Occupational Safety and Health Track.)

Technical Electives
Choose from the following:
CET 310 Anatomy of Buildings
CET 342 Air Quality Technology
CET 353 Solid Hazardous Waste Management
CET 385 Construction Estimating I
CET 480 Construction Planning and Management
CET 555 Environmental Regulatory Affairs
CET 585 Remediation Technology
CHE 120 Chemical Laboratory Safety
CHE 210 Brief Organic Chemistry
CHE 215 Organic Chemistry Laboratory
COM 384 Communication Skills for Professionals
COM 439 Conflict and Communication
CRI 140 Introduction to Criminal Justice
CRI 355 Security in Business and Industry
CRI 425 Terrorism
MGT 550 Human Resource Management
MGT 575 Labor-Management Relations
OSH 330 Global Issues in OSH
OSH 371 Professional Internship II
OSH 412 Emergency Management
OSH 453 Human Factors in Safety Engineering
OSH 488 Cooperative Education/Internship
OSH 499 Professional Development Seminar II
OSH 536 Motor Fleet Safety
OSH 571 Problems in Safety and Health
OSH 578 Workshop in Safety and Health
PSY 405 Industrial and Organizational Psychology
SPA 107 Basic Spanish and Culture for Occupational Safety and Health

Total Curriculum Requirements 123 hrs
1Course must contain lab component.
2CSC 199 can be substituted by another computer related course with advisor’s approval.
3May be repeated for additional credit.
4May be repeated for a second experience.

Occupational Safety and Health Minor 21 hrs
OSH 192, 353, 387, 420, and nine hours from OSH 101, 320, 384, 425, 452. Six hours must be upper-level courses. Courses may require prerequisites.

Graduate Program

The graduate program in occupational safety and health is unique in this region. In light of an increased sensitivity to the safety of the work environment and to the overall health of all Americans, the program is a timely response to business and industry needs. Few programs of this type are found in higher education.

Requirements for Admission

Applicants must meet the Murray State University requirements (see Graduate Admissions). Additional requirements for unconditional and conditional admission are as follows.

Unconditional

Unconditional Admission status is granted only to students who graduate from Murray State University with a baccalaureate degree in occupational safety and health with an overall GPA of 3.00 or higher.

Conditional

Conditional Admission status is granted to students with an undergraduate GPA of 2.75 or higher, regardless of undergraduate baccalaureate degree field or major. To change to Unconditional status, the student must meet the university requirement of obtaining a 3.00 in the first nine hours of graduate work and additional criteria set forth by the Department of Occupational Safety and Health.

Students admitted from a different undergraduate field/discipline must complete the following course work in addition to the above GPA requirements. Undergraduate coursework is required in biology, chemistry, mathematics, and physics. The following courses are the minimum accepted requirements for pursuing a master’s degree in occupational safety and health.
- BIO 101
- CHE 105
- PHY 125 and 126
- CHE 105
- PSY 300 or STA 135
- MAT 130 or MAT 140 and 145 or 150

Students must also complete 15 prerequisite credit hours in occupational safety and health and pass these courses with a grade of C or higher.

Prerequisite Undergraduate Requirements 15 hours
OSH 192 Introduction to Occupational Safety and Health
OSH 353 Prevention of Musculoskeletal Disorders in the Workplace
OSH 453 Human Factors in Safety Engineering
OSH 387 OSH Standards
OSH 420 Fundamentals of Industrial Hygiene

and one of the following concentration-specific courses:
Safety Management
OSH 384 Construction Safety

Industrial Hygiene
OSH 425 Physical Agents
Environmental
OSH 320 Environmental and Occupational Health Engineering Technology

Master of Science
Occupational Safety and Health

CIP 15.0701

Within departmental guidelines, the individual student’s program is developed in consultation with advisor.

THESIS REQUIREMENTS

Total Course Requirements ... 30 hours

Technical Requirements ... 12 hrs

Choose four from the following:
OSH 621 Industrial Hygiene and Safety Program Development
OSH 623 Occupational Diseases
OSH 626 Industrial Hygiene Sampling Strategies
OSH 630 Global Issues in OSH
OSH 636 Transportation Safety
OSH 637 Biostatistics and Probability
OSH 640 Safety and Health Program Management and Training
OSH 645 Loss Control Management and Measurement
OSH 646 Fundamentals of Risk Management
OSH 650 Occupational Safety and Health Organization Leadership
OSH 650 Occupational Safety and Health Organization Leadership
OSH 655 Legal Aspects of Safety and Health
OSH 655 Legal Aspects of Safety and Health
OSH 656 Ergonomics and Biomechanics
OSH 658 Introduction to Occupational Epidemiology
OSH 644 Cooperative Education
OSH 658 Introduction to Occupational Epidemiology
OSH 658 Introduction to Occupational Epidemiology
OSH 680 Graduate Seminar in Occupational Safety and Health

Thesis .. 6 hrs
OSH 698-699 Thesis

Other Degree Requirement

Oral defense of thesis.

1Technical requirements courses are selected based on the student’s program concentration and must be approved by the graduate program advisor.

NON-THESIS REQUIREMENTS

Total Course Requirements ... 30 hours

Same as above with the following substitution for thesis:

OSH 644 Cooperative Education
OSH 644 Cooperative Education
OSH 657 Current Literature and Research in Safety and Health
OSH 697 Research in Environmental Health and Safety

and one of the following courses chosen according to concentration
OSH 621 Industrial Hygiene and Safety Program Development
OSH 626 Industrial Hygiene Sampling Strategies
OSH 640 Safety and Health Program Management and Training
OSH 645 Loss Control Management and Measurement
OSH 655 Legal Aspects of Safety and Health
OSH 671 Advanced Safety and Health Management and Administration
OSH 650 Occupational Safety and Health Organization Leadership
OSH 655 Legal Aspects of Safety and Health
OSH 656 Ergonomics and Biomechanics
OSH 658 Introduction to Occupational Epidemiology
OSH 680 Graduate Seminar in Occupational Safety and Health
OSH 698-699 Thesis

All students (thesis or non-thesis) must also complete 12 credit hours by selecting one of the following three concentrations. Substitutions within these concentrations can be made only with the approval of the advisor. Consult with advisor when choosing a concentration. Additional coursework may be required.