Environmental Modeling and Monitoring Lab
Journal Publications:
-
Yang, Y., B. Tao, L. Liang, Y. Huang, C. Matocha, C.D. Lee, M. Sama, B. El Masri, W. Ren (2021). Detecting Recent Crop Phenology Dynamics in Corn and Soybean Cropping Systems of Kentucky. Remote Sensing, 13, 1615. doi.org/10.3390/rs13091615. (pdf)
-
Ferguson, B., W.E. Lukens, B. El Masri, G.E. Stinchcomb (2020). Alluvial landform and the occurrence of paleosols in a humid-subtropical climate have an effect on long-term soil organic carbon storage. Geoderma, 371, 114388.
-
El Masri, B., C. Schwalm, D.N. Huntzinger, J. Mao, X. Shi, C. Peng, J. Fisher, A. Jain, H. Tian, B. Poulter, A.M. Michalak (2019). Carbon and Water Use Efficiencies: A comparative analysis of ten terrestrial ecosystem models under changing climate. Scientific Reports, 9. 14680. (pdf)
-
Yang, Y., B. Tao, W. Ren, D. Zourarakis, B. El Masri, Z. Sun, and Q. Tian (2019). A Novel Approach Considering Intraclass Variability for Mapping Winter Wheat Using Multi-temporal MODIS EVI Images. Remote Sensing, 11, 1191; doi:10.3390/rs11101191. (pdf)
-
El Masri, B., A.F. Rahman, and D.D. Dragoni (2019). Evaluating a New Algorithm for Satellite based Evapotranspiration for North American Ecosystems: Model development and Validation. Agricultural and Forest Meteorology, 268,243-248.
-
El Masri, B. (2017). Examining the spatial and temporal variability of soil moisture in Kentucky using remote sensing data. Biomed. Sci. & Tech. Res. (pdf)
-
El Masri, B., S. Shu, A.K. Jain (2015). Implementation of dynamic root depth and phenology into a land surface model: Evaluations of carbon, water, and energy fluxes in the high latitude ecosystems. Agricultural and Forest Meteorology, 211, 85-99.
-
Schwalm, C., D. Huntzinger, J. Fisher, A. Michalak, K. Bowman, P. Ciais, R. Cook, B. El-Masri, et al. (2015). Toward “optimal” integration of terrestrial biosphere models. Geophysical Research Letters, 42(11), 4418-4428.
-
Miller, P., M. Robson. B. El-Masri, R. Barman, G. Zheng, A. Jain, L. Kale (2014). Scaling the ISAM Land Surface Model through parallelization of Inter-Component data transfer. Parallel Processing (ICPP), 2014 43rd International Conference on , vol., no., pp.422,431, 9-12 Sept., doi: 10.1109/ICPP.2014.51
-
Fisher, J.B, M. Sikka, W.C. Oechel, D.N. Huntzinger, J.R. Melton, C.D. Koven, A. Ahlström, A.M. Arain, I. Baker, J.M. Chen, P. Ciais, C. Davidson, M. Dietze, B. El-Masri, et al. (2014). Carbon cycle uncertainty in Alaskan Arctic. Biogeosciences, 11, 4271-4288
-
Zscheischler, J., A.M. Michalak, C. Schwalm, M.D. Mahecha, D.N. Huntzinger, M. Reichstein, G. Bertheir, P. Ciais, B. El-Masri, et al. (2014). Impact of Large-Scale Climate Extremes on Biospheric Carbon Fluxes: An Intercomparison Based on MsTMIP Data. Global Biogeochemical Cycles, DOI: 10.1002/2014GB004826
-
De Kauwe, M.G., B.E. Medlyn, A.P. Wakler, S. Asao, M.C. Dietze, B. El-Masri, et al. (2014). Where does the carbon go? A model-data intercomparison of carbon allocation at two temperate forest free-air CO2 enrichment sites. New Phytologist, 203(3), 883-899.
-
Zaehle, S., B.E. Medlyn, M.G. De Kauwe, A.P.Walker, M.C. Dietze, T. Hickler, Y. Luo, Y.P.Wang, B. El-Masri, et al. (2014). Evaluation of eleven terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment Studies. New Phytologist. DOI: 10.1111/nph.12697.
-
El-Masri, B., R. Barman, P. Meiyappan, Y. Song, M. Liang. A. K. Jain (2013). Carbon Dynamics in the Amazonian Basin: Integration of eddy covariance and ecophysiological data with a land surface model. Agricultural and Forest Meteorology. 182-183, 156-167.
-
Rahman, A.F., D. Dragoni., B. El-Masri (2011). Response of the Sundarbans coastline to sea level rise and decreased sediment flow: A remote sensing assessment. Remote Sensing of Environment. 115: 3121-3128.
-
Sim, D. A., A. F. Rahman, C. D. Cordova, B. Z. El-Masri, D. D. Baldocchi, P. V. Bolstad, L.B. Flanagan, A. H. Goldstein, D. Y. Hollinger, L. Mission, R. K. Monson, W. C. Oechel, H. P. Schmid, S. C. Wofsy, L. Xu. (2008). A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS . Remote sensing of Environment. 112: 1633-1646.
-
Sim, D. A., A. F. Rahman, C. D. Cordova, B. Z. El-Masri, D. D. Baldocchi, L. B. Flanagan, A.H. Goldstein, D. Y. Hollinger, L. Mission, R. K. Monson, W. C. Oechel, H.P. Schmid, S. C. Wofsy, L. Xu (2006). On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. Journal of Geophysical Research, 111, G4, G04015, 10.1029/2006JG000162.
-
Rahman .A. F., D. A. Sims, V. D. Cordova, B. Z. El-Masri (2005). Potential of MODIS EVI and Surface Temperature for Directly Estimating Per-Pixel Ecosystem C Fluxes. Geophysical Research Letters, 32, 19, L19404, doi:10.1029/2005GL024127.